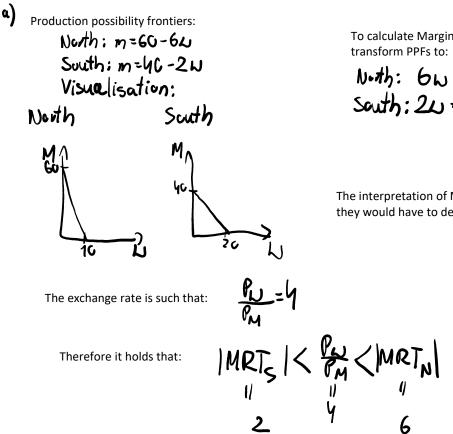
Problem 2



To calculate Marginal Rate of Transformation (MRT) it is convinient to

transform PPFs to: Noth: 6w + M = 60South: 2w + M = 4c = 3MRT_s = $-\frac{000}{000}$ MRT_s = $-\frac{0000}{000}$

The interpretation of MRT for North: to produce 1 more unit of wheat, they would have to decrease the production of milk by 6

Because of that, North will specialize in production of milk, and south in production of wheat. Intuitively, to produce 1 unit of wheat North would have to sacrifice 6 units of milk. Because of that, it is more benefitial for them to produce 6 milks and exchange them for 1.5 wheats.

On the other hand, the South needs to sacrifice only 2 milks for 1 wheat. If they produce milk, then, with the given exchange rate, they would only get 0.5 of wheat for 2 milks on the market. So it is better for them to produce wheat.

Viking comes in and proposes the exchange rate of: $\frac{V_{LL}}{V_{LL}} = 3$

Because the condition: MRTS K PM < MRTN

Still holds for the new exchange rate, the production does not change

 $\frac{\ell_{\rm L}}{\ell_{\rm AA}} \epsilon(2,6)$

Problem 3



$$\begin{cases} X_{A} = 1L_{AY} \qquad \Rightarrow \int L_{AX} = X_{A} \\ L_{AY} = Y_{A}^{2} \end{cases} \qquad \text{be know that: } L_{AX} + L_{AY}^{2} = 100 \\ \text{sc:} \qquad X_{A}^{2} + Y_{A}^{2} = 100 \\ \text{This is PPFA} \end{cases}$$
For region B:

$$\begin{cases} X_{B} = \frac{1}{2} |L_{BX} = 3 \\ Y_{A} = \frac{1}{2} |L_{BY} = \frac{1}{2} |L_{BX} = \frac{1}{2} |Y_{B}^{2} \end{cases} \qquad \text{because: } L_{BX} + L_{BY}^{2} = 100 \\ \text{This is PPFA} \end{cases}$$

$$\begin{cases} X_{B} = \frac{1}{2} |L_{BY} = 3 \\ L_{BY} = \frac{1}{2} |Y_{B}^{2} \rangle \end{aligned} \qquad \text{be have: } |Y_{X}_{B}^{2} + \frac{1}{2} |Y_{B}^{2} = 100 \\ \text{PFFB} \end{cases}$$

$$\begin{cases} M_{R}T = -\frac{MC_{X}}{MC_{Y}} = -\frac{R_{X}}{R_{3}} = MRS \\ \text{For regions A and B produced only X they could produce 1S units of it. The same goes for Y. Therefore, joint PPF is: \\ X_{A}^{2} + Y_{A}^{2} = \frac{1}{2} = 3 \times 2^{2} + Y_{A}^{2} = 22S \\ \text{If regions A and B produced only X they could produce 1S units of it. The same goes for Y. Therefore, joint PPF is: \\ X_{A}^{2} + Y_{A}^{2} = \frac{1}{2} = 3 \times 2^{2} + \frac{1}{2} = 22S \\ \text{If } X = \frac{1}{2} / h_{M} Y = S \end{cases}$$

$$d) \qquad MRT_{A}^{2} = -\frac{2X_{A}}{2Y_{A}} = -\frac{X_{A}}{Y_{A}} \qquad PRF \text{ is } X_{A}^{2} + \frac{1}{2} = 1CO_{J} \\ \text{ so if } X_{A} = \frac{8}{3} / h_{M} N / h_{A} = 6. \end{cases}$$

For these values: MRTA = - &= - 43

Interpretation: To produce one more unit of X region A would have to decrease the production of Y by 4/3.

Problem 4 W PPFs are given by: 1: (+M=40) = (=40 - M) 2: (+2M=60) = (=60 - 2M)The aggregate PPF is given by:

MIKRO 3 Strona 2

c=100-M if MGLU,40) Gratically: c=14c-2M if MGL40,70] 100

Why is it like that?

If both individuals produce only C, they can get 100 units of it. So this is the value that the PPF needs to take for M = 0. Because the first individual has a comparative advantage in M (he needs to sacrifice only 1 unit of C for 1 unit of M, whereas the other person needs to sacrifice 2 units of C), then if we want to produce only a little amount of M he will be the one doing it. Specifically, for M <= 40 only the person 1 will be producing it, and so the slope will be -1. This gives us the first part of PPF.

For the second part, the second individual will start producing M, which will give us the slope of -2. The 140 arises because for M=40, C must be equal to 60, so that both lines would connect at this kink point.

60

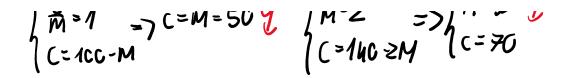
4c 90

5) The condition that needs to hold is: MPS=MPT G, U=CM² We have MPS=2M

Because MRT is a piecewise linear function we need to consider two cases:

(1)
$$M \in [0, 40]$$
 slope of the
Then: $|MRT| = 1^{c}$ line
We need to solve:
 $|2 = 1^{c}$ $M = 66^{1/3}$ H is tailange, so this cannot be
 $|2 = 1^{c}$ $M = 66^{1/3}$ H our solution.
 $|C = 100 - M$ $(= 33^{1/3})$

c)
$$U(C_{1,M}) = CM$$
, so $|MQS| = \frac{C}{M}$
Again, two cases:
 $M \in \overline{L}_{1,4C}$
 $\int M \in \overline{L}_{1,4C}$
 $\int M = \frac{C}{M} = \frac{1}{2}C = M = 50 \frac{L}{2}$
 $\int M = \frac{C}{M} = \frac{1}{2}C = M = 50 \frac{L}{2}$
 $\int M = \frac{1}{2}C = M = 50 \frac{L}{2}$
 $\int M = \frac{1}{2}C = \frac{1}{2}M = \frac{1}{2$



If we find a contradiction in both cases, that means that we have a corner solution. As for Cobb-Douglas utility function the corner solutions with 0 production give utility = 0, the only viable solution is at the kink point, namely: C = 60 and M = 40. This will be the optimal consumption level.