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GENERALIZED LINEAR MODELS

GLMs are based on Exponential dispersion model for which general formula for 
probability is given by:

is a mean of the distribution 

is called a unit deviance

 For example, for normal distribution:

is a normalizing term

 For example, for normal distribution:
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GENERALIZED LINEAR MODELS

Examples of the distributions from the exponential dispersion model include: inverse-
gaussian, gamma, binomial and poisson

Similarly, as in linear regression we assume that mean of the distribution is some 
linear function of the covariates

 This is usually called a “link function”

 If the dependent variable is positive, we will usually use logarithm as a link function
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EXERCISE 1: GLM

1. Continue to work on the wine.xls data, with a functional form from the previous 
class

2. Estimate GLM’s with gamma and inverse-Gaussian distributions

3. Compare their model fit to the regression model we tried before

4. Analyze first simulation example in Sim_examples2.R
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DIAGNOSTICS IN GLMS

In linear regression most assumptions were tested using residuals from the model

In GLMs it not exactly clear how to define residuals

 Response residuals are defined as

 In GLMs this is less useful as variance of the distribution is usually a function of the fitted values

 Person’s residuals are given by

 Account for non-constant variance 

 Deviance residuals are defined as

 Finally, quantile residuals can be calculated as

 It could be shown that they are normally distributed, the other are only approximately normal, and even that is not always true

 If the dependent variable is discrete then quantile residuals employ additional randomization to make it more smooth
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EXERCISE 2: GLM

1. Predict different types of residuals for the GLMs

2. Check whether quantile residuals are normally distributed

3. Plot residuals against fitted values and covariates

4. Calculate influence measures
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QUANTILE REGRESSION

In GLMs we modelled conditional mean of the distribution

We also showed that for Gaussian distribution you can also specify the functional 
form of the conditional variance:

 Sometimes distribution could be more complex and these two moments may not describe the full 
distribution

Quantile regression is a semiparametric method which allow us to model separately 
each quantile of the distribution  
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QUANTILE REGRESSION

As a remainder: quantile   is such a value     , that

In Quantile regression we define conditional quantiles:

Usually similar specification as for linear regression:

 Different coefficients for different quantiles    
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QUANTILE REGRESSION

The simplest case is a median regression, for which we will minimize the following 
objective function: 

In more general case:

This is sometimes called Least Absolute Deviations estimator
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EXERCISE 3: QUANTILE REGRESSION

1. Estimate quantile regression for 0.25, 0.5 and 0.75

2. Compare coefficients across different quantiles and with OLS 
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QUANTILE REGRESSION

Advantages:

 No assumptions for the distribution of the dependent variable

 More robust to outliers than KMRL

 It can imply heteroscedasticity in the data

 Quantile of the transformed variable is equal to the transformed quantile of the original variable

 If the transformation is increasing

 Not true for mean, for example

 Disadvantages: standard errors are either approximated or have to be simulated with bootstrap
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EXERCISE 4: QUANTILE REGRESSION

1. See how heteroscedasticity affects results from QR in Sim_examples2.r

2. Estimate QR for quantiles: 0.1, 0.25, 0.5, 0.75 and 0.9

1. Test whether coefficients differ between quantiles

3. Plot coefficients for different quantiles to analyze differences visually
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WORKBOOK 2

Now try to conduct a similar analysis for the exercises in Workbook2.R

 Exercises 1 and 2
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ZERO RESPONSES

Very often the dependent variable is continuous but can also contain 0 values

 Can correspond to some solutions of consumer optimization problem, for example, expenditures

As most of responses has positive values we would like to take logarithm of it

 Because of 0 responses we cannot do that

Possible solutions:

 Assume linear relationship

 Add small constant to the variable and use logs:

 Use Poisson regression

 Use Tobit model

 Use two step models (for example Heckman selection)  
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ZERO RESPONSES
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POISSON

Poisson probability is given by the formula:

 It is generally for dependent variables that are integers

 Can be fitted to the positive continuous data nonetheless

 It is not a valid probabilistic model though, log-likelihood does not make sense

 It is often called a pseudo-maximum likelihood estimator

 It is well defined for zero values of the dependent variable

 Usually based on logarithmic link function:

 Elasticity can be easily calculated 
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TOBIT

Can also be called a censored regression model

Data are assumed to be normally distributed with censoring at 0

𝑦∗ corresponds to ‘uncensored’ variable

Another way to look at it: 

Estimated with Maximum Likelihood Method: 
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MARGINAL EFFECTS

In nonlinear models coefficients usually do not have direct interpretation as in linear 
regression

 Usually we look only at signs of coefficients to get qualitative interpretation

Marginal effects are calculated to obtain absolute interpretation

 This is just a simple derivative

It takes different values for different respondents 

 Either average it over respondents or calculate at mean value of X
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MARGINAL EFFECTS

For Poisson model we will have:

For Tobit:  

Where: 
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EXERCISE 5: ZERO RESPONSES

1. Read me.usahealth.rds dataset into R

2. Compare different approaches of finding an effect of coinsurance rate on 
medical expenditures

1. Try OLS, OLS with logarithmic transformation of the dependent variable, Tobit and Poisson model

2. Calculate marginal effects to interpret results from the model

3. Compare models fit to data
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WORKBOOK 2

Now try to conduct a similar analysis for the exercises in Workbook2.R

 Exercise 3
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INTERVAL REGRESSION

Often covariates obtained from the surveys are censored on some intervals

 For example instead of asking directly for someone’s income, we could ask respondent to indicate to 
which interval (e.g. 0-1500 PLN, 1500-3000 PLN, 3000-5000 PLN and so on) their income belongs to

 By doing it we of course limit the amount of the information obtained from the survey

 On the other hand such information could be more reliable (more truthful, less prone to error)

In such data research does not have full information about value of the covariate, he 
only knows which interval it lies within

OLS will lead to biased estimates as it assumes that the values of dependent variable 
are exact
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INTERVAL REGRESSION

More formally, let assume that              is a CDF function of the distribution that data 
are assumed to come from (e.g. normal)

If we only know that                 , then probability of it will be given by: 

This could be used to construct maximum likelihood estimator

 Any continuous distribution could be chosen

 Choice of the distribution will usually be data driven
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EXERCISE 6: INTERVAL REGRESSION

1. Read WTPint.xls dataset into R

2. Construct an interval variable used by survival package

3. Estimate interval regressions with different distributional assumptions
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