MICROECONOMETRICS CLASS 1

Wiktor Budziński Marek Giergiczny

GENERAL INFORMATION

Course will be organized on the subpage of my website https://www.acep.uw.edu.pl/budzinski/microeconometrics/

Presentations, datasets, R codes

Meetings will take place in room J at the Faculty

- 09:30 am 11:30 am
- 12:00 pm 01.30 pm
- 01.45 pm 14:45 pm

Learning by doing workshop

- Presentation with basic theory and necessary R function and packages
- Individual work on different dataset
 - Codes with comments and some summary of the results should be send to a teacher till Wednesday next week after given class (midnight)

CLASS DATES

Teacher: Wiktor Budziński

2021-04-14
 2021-04-21
 2021-04-28
 2021-05-05
 2021-05-12 (Juwenalia)

Teacher: Marek Giergiczny

2021-05-19
 2021-05-26
 2021-06-02
 2021-06-16
 2021-06-23 (End of the semester)

COURSE ORGANIZATION

- Class 1: Brief introduction to R, OLS, building econometric models, OLS extensions
- Class 2: Generalized Linear Models, Quantile regression, continous variables with 0 outcomes
- Class 3: Models for count, ordinal and binary data
- Class 4: Discrete choice models I
- Class 5: Discrete choice models II
- Class 6: Simulation methods
- Class 7: Endogeneity
- Class 8: Sample selection, treatment effects
- Class 9: Panel data methods
- Class 10: Programming econometric models in R

R LANGUAGE

R is a programming language primarily used for statistical computation

- Open source from 1995
- Currently 9th most popular programming language
- Can be download at <u>https://www.r-project.org</u>

Although a lot of functionalities are installed with R, it relies on user-written packages for specific techniques

• We will install them as we go along the course

User interface is not that "nice" in basic R

We will use RStudio IDE: <u>https://rstudio.com/products/rstudio/download/</u>

MODELS FOR CONTINUOUS VARIABLES

Introduction to R and linear regression

- Model specification and general assumptions
- Model's interpretation and testing of the assumptions
- Building of the econometric model
- Extensions: nonlinear functions, modelling heteroscedasticity

Next class:

- Generalized linear models
- Quantile regression
- What to do when we have continuous variable with zeros
- Censoring of the continuous variable

Model form is as follows: $y_i = \mathbf{X}_i \mathbf{\beta} + \varepsilon_i$

- We model linear relationship between dependent variable y and independent variables ${f X}$
- Model coefficients, β , are unknown but we can estimate them from the data
- Linear regression models how mean of y depends on **X**, namely $\mathbf{E}(y_i | \mathbf{X}_i) = \mathbf{X}_i \boldsymbol{\beta}$
- Model coefficients can be estimated using Ordinary Least Squares method:

$$\hat{\boldsymbol{\beta}} = \min_{\boldsymbol{\beta}} \left\{ \sum_{i} (y_i - \mathbf{X}_i \boldsymbol{\beta})^2 \right\}$$

• Analytical solution can be easily found: $\hat{\boldsymbol{\beta}} = \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' y$

If certain assumptions are met then OLS estimator is:

- Unbiased (on average parameters are equal to true values)
- Consistent (precision increases with the sample size)
- Efficient (characterized by the lowest variation of the estimates)

Most important assumptions:

- Linear functional form
- Spherical error terms
 - No correlation between error terms
 - Homoskedasticity constant variance of the error term
- Exogenous covariates
 - Dependent variables are not correlated with an error term
- Normally distributed error terms

Assumption about functional form can be tested with RESET test:

- Conducted in two steps:
 - Estimate model parameters, $\hat{m{eta}}$, and calculate fitted values $\mu_i = {m{X}}_i \hat{m{eta}}$
 - Estimate second regression of the form: $y_i = \mathbf{X}_i \mathbf{\beta} + \alpha_1 \mu_i^2 + \alpha_2 \mu_i^3 + \varepsilon_i$
- Significance of alpha's inform us whether form is correct

Assumption about homoskedasticity can be tested with Breush-Pagan test:

• Second regression is estimated in which squared residuals are explained by covariates: $\left(\widehat{\mathcal{E}}_{i}
ight)$

$$\widehat{\varepsilon}_i \Big)^2 = \mathbf{X}_i \mathbf{\gamma} + u_i$$

Significance of gamma's inform us whether the form is correct

CASE STUDY — DETERMINANTS OF WINE PRICES

Costanigro, M., Mittelhammer, R. C., and McCluskey, J. J. (2009). *Estimating* class-specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine markets. Journal of Applied Econometrics, 24(7), 1117-1135.

- Data regarding prices and others characteristics of wine produced in California and Washington
- Hedonic analysis decomposition of the value of the good (usually approximated by price) on the value of each characteristic
 - How much is each characteristic contributing to the price?
 - Can be used in marketing, but also often used in environmental economics

EXERCISE 1: BASIC REGRESSION

- 1. Read data from *wine.xlsx* into R
- 2. Plot the price variable and calculate basic statistics for it
- 3. Estimate basic regression model
- 4. Test basic assumptions of the OLS
 - 1. Use formal tests as well as graphical analysis

EXERCISE 1: BASIC REGRESSION

- 1. Read data from *wine.xlsx* into R
- 2. Plot the price variable and calculate basic statistics for it
- 3. Estimate basic regression model
- 4. Test basic assumptions of the OLS
 - 1. Use formal tests as well as graphical analysis

EXERCISE 2: BASIC REGRESSION

- 1. Use nonlinear transformations to improve model's functional form
- 2. Add interactions between covariates

EXERCISE 2: BASIC REGRESSION

- 1. Use nonlinear transformations to improve model's functional form
- 2. Add interactions between covariates

INFLUENTIAL OBSERVATIONS

Some observation could affect model estimates more than others

• If these observations are outliers and not correct data points this could lead to model misspecification

Some useful measures to detect such observations:

- Leverage (h_i) is a weight that a given response (y_i) has on it's own fitted value (μ_i) Cook's distance is a combination of residuals and leverage: $D_i = \frac{r_i^2}{p} \frac{h_i}{1-h_i}$

• DFFITS measures how much fitted value changes without a given observation: $DFFITS_i = \frac{\mu_i - \mu_{i(i)}}{\mu_i}$ $S_{(i)}$

• DFBETA measures how much coefficient estimates would change without a given observation: $DFBETA_{ij} = \frac{\beta_j - \beta_{j(i)}}{co^{(-\beta_j)}}$

EXERCISE 3: BASIC REGRESSION

- 1. Check whether there any influential observations in the model
- 2. Is there any dependence between price and influence measures?

EXERCISE 3: BASIC REGRESSION

- 1. Check whether there any influential observations in the model
- 2. Is there any dependence between price and influence measures?

WORKBOOK 1

Now try to conduct a similar analysis for the exercises in Workbook1.R

BOX-COX TRANSFORMATION

Instead of trying to fit various different nonlinear specifications it is possible to just estimate it using some more flexible function

One often used transformation is Box-Cox transformation in the form of:

$$x^{(\lambda)} = \frac{x^{\lambda} - 1}{\lambda}$$

- Could be used for both, dependent and independent variables
- For $\lambda \rightarrow 0$ it becomes a logarithmic transformation
- For example, we fit the model: $\frac{y_i^{\lambda} 1}{\lambda} = \mathbf{X}_i \mathbf{\beta} + \varepsilon_i$
- Which is equivalent to: $y_i = (\lambda \mathbf{X}_i \boldsymbol{\beta} + \lambda \varepsilon_i + 1)^{\frac{1}{\lambda}}$
- Has to be done with Maximum Likelihood estimator

BOX-COX TRANSFORMATION

The same transformation could be applied to the independent variables

For example we could fit the following model: $y_i = \mathbf{X}_i \mathbf{\beta} + Z_i^{(\lambda)} + \varepsilon_i$

There is one additional parameter to estimate

Usually also done with Maximum Likelihood method

MAXIMUM LIKELIHOOD ESTIMATOR

We assume some probabilistic model, with density given by $f(y_i | \mathbf{X}_i, \boldsymbol{\beta})$

For discrete variables it should be a probability function

If we have N independent observations in the sample, that under this model the probability of drawing the given sample is: N = N

$$L = \prod_{i=1}^{N} L_{i} = \prod_{i=1}^{N} f(y_{i} | \mathbf{X}_{i}, \boldsymbol{\beta})$$

MLE looks for betas which maximize this likelihood function

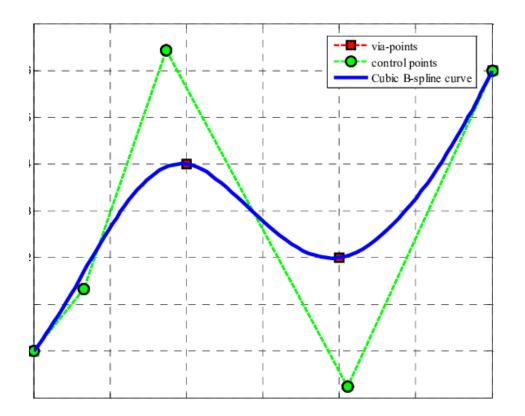
Which model is most likely to produce such data

This optimization problem is equivalent to maximizing it's logarithm: $LL = \log(L) = \sum_{i=1}^{N} \log(f(y_i | \mathbf{X}_i, \boldsymbol{\beta}))$ • This is usually easier numerically

SPLINES

Splines are piecewise polynomials functions

- For a given number of knots splines fit a polynomial function between every two subsequent knots
- Different splines differ in terms of their smoothness and variability
- Cubic splines mean that cubic polynomial is fit between every two subsequent knots
 - Natural cubic spline adds additional constraints, namely that the function is linear beyond the boundary knots
- Optimization procedure could be used to choose the optimal number of knots and polynomials order



EXERCISE 4: NONLINEAR TRANSFORMATIONS

- 1. Use the Box-Cox transformation to find which transformation of price would fit data best
 - 1. Check whether it helps with a functional form of the model, and compare the results with a logarithmic regression
- 2. Use different splines to fit more complex relationships between price and no. of produced cases, as well as price and the taste score.

EXERCISE 4: NONLINEAR TRANSFORMATIONS

- Use the Box-Cox transformation to find which transformation of price would fit data best
- 1. Check whether it helps with a functional form of the model, and compare the results with a logarithmic regression
- 2. Use different splines to fit more complex relationships between price and no. of produced cases, as well as price and the taste score.

EXERCISE 4B: SPLINES IN SPATIAL ANALYSIS

Sometimes we want to model how some variable vary in space

- This relationship is likely to be nonlinear with some clusters (hot-spots and cold spots)
- Splines can be useful to identify and visualize such relationships

We used it in this paper to investigate spatial clusters of willingness to pay

- Czajkowski, M., Budziński, W., Campbell, D., Giergiczny, M., & Hanley, N. (2017). Spatial heterogeneity of willingness to pay for forest management. *Environmental and Resource Economics*, 68(3), 705-727.
- 1. Look at WTP_example.r for visualization of this procedure

HETEROSKEDASTICITY

OLS is still consistent and unbiased estimator even if error terms are heteroskedastic • It is no longer efficient, and error terms are calculated with a wrong formula

Easy fix is to use robust covariance matrices

• The most popular one is White's matrix: $(\mathbf{X}'\mathbf{X})^{-1} \times \sum_{i=1}^{n} e_i^2 X_i X_i' \times (\mathbf{X}'\mathbf{X})^{-1}$

There are other alternatives in R

HETEROSKEDASTICITY

Heteroskedasticity can also be directly accounted for by parametrizing it, and estimating how variance depends on other covariates

Instead of modelling $y_i = \mathbf{X}_i \boldsymbol{\beta} + \varepsilon_i$ with $Std(\varepsilon_i) = \sigma_i$, we can assume some nonlinear relationship, for example: $Std(\varepsilon_i) = \sigma_i(\mathbf{X}_i) = \exp(\mathbf{X}_i \boldsymbol{\gamma})$

Such model can be estimated with maximum likelihood method

- Could be useful if we care about predictions
- Important if the dependent variable is in logarithms

EXERCISE 5: HETEROSKEDASTICITY

- 1. Estimate model with a robust covariance matrix
 - 1. Compare results with a standard estimates
- 2. Estimate model in which heteroskedasticity is directly controlled for.
 - 1. Conduct Breush-Pagan to test whether the model accounts for the whole heteroskedasticity

EXERCISE 5: HETEROSKEDASTICITY

- 1. Estimate model with a robust covariance matrix
- 1. Compare results with a standard estimates
- 2. Estimate model in which heteroskedasticity is directly controlled for.
 - 1. Conduct Breush-Pagan to test whether the model accounts for the whole heteroskedasticity

WORKBOOK 1

Now try to conduct a similar analysis for the rest of the exercises in Workbook1.R

