ENDOGENEITY OF INDICATOR VARIABLES IN HYBRID CHOICE MODELS:

Monte Carlo investigation vs. stated preference study

Wiktor Budziński, Mikołaj Czajkowski, Ewa Zawojska

University of Warsaw, Faculty of Economic Sciences

Supported by:

Outline

- Introduction
 - Choice modeling and unobserved/latent factors
 - Problems with indicator variables
 - Hybrid choice models
- Endogeneity and hybrid choice models
- Monte Carlo simulation
 - General setup
 - Results
- Empirical study
 - Stated preferences and consequentiality
 - Data
 - Results
- Conclusions

Budzinski and Czajkowski (2022). Endogeneity and measurement bias of the indicator variables in hybrid choice models: A Monte Carlo investigation

Budzinski, Czajkowski and Zawojska (2022). Endogeneity of self-reported consequentiality in stated preference studies

Introduction

Choice modeling and unobserved/latent factors

- In the choice modeling field, we are interested in estimating the preferences of the individual
- Usually, we parametrize the preferences using random utility function
 - For example, multinomial logit model or mixed logit

$$U_{ijt} = \boldsymbol{\beta}_i' \boldsymbol{X}_{ijt} + e_{ijt}$$

- Marginal utilities are often allowed to be heterogeneous
 - Unobserved heterogeneity leads to the random parameters or latent class specifications

$$\boldsymbol{\beta}_i = \boldsymbol{\Lambda} \boldsymbol{Z}_i + \boldsymbol{\beta}_i^*$$

Simplified choice scenario:

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	\mathbf{X}_{11}	\mathbf{X}_{12}	\mathbf{X}_{13}
Attribute 2	\mathbf{X}_{21}	\mathbf{X}_{22}	\mathbf{X}_{23}
Attribute 3	\mathbf{X}_{31}	\mathbf{X}_{32}	\mathbf{X}_{33}^{23}
Cost	\mathbf{X}_{41}	\mathbf{X}_{42}	\mathbf{X}_{43}^{33}
Your choice:		42 □	

Introduction Choice modeling and unobserved/latent factors

- In many applications some of the independent variables are not directly observed by the researcher or not easily measurable
- This could be attributes of the choice alternatives
 - In marketing it could be quality of the good
 - In transportation it could be a comfort of the transportation mode
 - In environmental economics it could be water quality
- Or some characteristics of the respondent
 - In stated preference studies it could be survey consequentiality
 - In many applications, risk aversion could also be a relevant factor
- These factors can be necessary to correctly estimate/interpret the model, or they
 may be of interest by themselves from the policy or research perspective

Introduction

Problems with indicator variables

- If we collect the data with a survey, then we can try to measure relevant factors by asking some attitudinal questions
- For example, if we model individuals' wine choice and want to measure their perception of the quality of the given wine bottle we can ask:
 - "Using a scale from 1 to 5, where 1 means "I strongly disagree" and 5 means "I strongly agree", please indicate your level of the agreement with the following statement:

I believe this wine is excellent."

- Analogously, when measuring survey consequentiality we can ask respondents to rate the following statement
 - "To what extent do you agree with the statement that the results of the survey will influence future policy?"

Introduction

Problems with indicator variables

- Having such indicator variables put directly into choice model is usually considered to be methodologically flawed
 - Indicators are not direct measures of latent constructs but rather their functions
 measurement bias
 - There may be unobserved effects that influence both a respondent's choice and their responses to indicator questions <u>endogeneity bias</u>
- To resolve these issues, it was proposed to use the so-called Hybrid Choice Models instead

Introduction Hybrid choice models

- Initially proposed by Ben-Akiva et al. (1999) and Ben-Akiva et al. (2002)
- General framework for more complex choice models
 - Flexible disturbances
 - Explicit modelling of latent psychological factors
 - Latent segmentation for different decision protocols
- Integrated Choice and Latent Variables models focus mostly on the second point
 - Although currently the names are used interchangeably
- Useful when we are interested in the effect of 'soft' (not objectively measureable)
 variables, such as perceptions and attitudes, on choices / preferences
 - More 'behavioral' approach for explaining preference heterogeneity
- We conduct a Monte Carlo simulation to test the claims that this class of models mitigate measurement and endogeneity biases caused by indicator variables

Introduction Hybrid choice models

Discrete choice model

(e.g. mixed logit model)

Latent variables influence preferences

$$\mathbf{L}\mathbf{V}_{i} = \mathbf{\Psi}'\mathbf{X}_{i}^{str} + \mathbf{\xi}_{i}$$

Latent variables

(structural equation)

Unobserved psychological factors

$$U_{ijt} = \beta_i' X_{ijt} + e_{ijt}$$
$$\beta_i = \Lambda L V_i + \Omega S D_i + \beta_i^*$$

$$\mathbf{I}_{i} = \mathbf{\Gamma} \mathbf{L} \mathbf{V}_{i} + \mathbf{\Phi} \mathbf{X}_{i}^{Mea} + \mathbf{\eta}_{i}$$

Measurement equations

Latent variables influence indicators
(e.g. "To what extent do you agree with the statement that the results of the survey will influence future policy?"

(from 1 – 'definitely disagree' to 5 – 'definitely agree')

Endogeneity and hybrid choice models

- Measurement error causes endogeneity in and by itself (Walker et al. 2010)
 - We treat it as a separate issue
- Chorus and Kroesen (2014) list possible reasons for endogeneity of latent variables:
 - Missing variables which influence both latent variable and choices of individuals
 - Learning effects
 - Individuals tend to align their attitudes with their actual choices in order to seem consistent
- Hybrid choice models have been used to solve endogeneity issue caused by some observed covariates
 - For example, effect of price when quality is unobserved
 - HCM can be used to impute missing variable
 - <u>We do not study this</u>. In our case indicators are the cause of endogeneity, rather than the solution for it

Endogeneity and hybrid choice models

- We consider two types of indicator variables' endogeneity:
 - LV-endogeneity
 - Latent variable is endogenous in itself
 - Correlated error terms in choice model and structural equations
 - M-endogeneity
 - Indicator variables are endogenous, but latent variable is not
 - Correlated error terms in choice model and measurement equations
- Simulation with 1'000 individuals, 6 choice tasks per person, 3 alternatives per choice task (including the Status Quo)
- 1000 repetitions

Utility function

$\begin{aligned} V_{ijt} &= \beta_{1i} SQ_{ijt} + \beta_{2i} Quality_{ijt} - \beta_{3i} Cost_{ijt} + e_{ijt} & \beta_{1i} &= \alpha_{11} + \alpha_{12} LV_i + \alpha_{13} X_i^{Miss} \\ SQ_{ijt} &\in \{0,1\} & \beta_{2i} &= \alpha_{21} + \alpha_{22} LV_i + \alpha_{23} X_i^{Miss} \\ Quality_{ijt} &\sim U\left(0,2\right) & \beta_{3i} &= \exp\left(\alpha_{31} + \alpha_{32} LV_i + \alpha_{33} X_i^{Miss} \right) \\ Cost_{ijt} &\sim U\left(0,2\right) & X_i^{Miss} &\sim N\left(0,1\right) \\ e_{ijt} &\sim EV_I\left(0,1\right) & \end{aligned}$

Choice model

Latent variable (structural component)

Indicator variables (measurement component)

$$LV_{i}^{*} = \alpha_{61}X_{i}^{SD} + \alpha_{62}X_{i}^{Miss} + \xi_{i}$$

$$\xi_{i} \sim N(0,1)$$

$$X_{i}^{SD} \sim N(0,1)$$

$$I_{i1} = \alpha_{41} + \alpha_{42}LV_{i} + \alpha_{43}\eta_{i1}$$

$$I_{i2} = \alpha_{51} + \alpha_{52}LV_{i} + \alpha_{53}\eta_{i2}$$

$$\eta_{i1} \sim N(0,1)$$

$$\eta_{i2} \sim N(0,1)$$

Choice model

Utility function

$$V_{ijt} = \beta_{1i}SQ_{ijt} + \beta_{2i}Quality_{ijt} - \beta_{3i}Cost_{ijt} + e_{ijt}$$

$$SQ_{ijt} \in \{0,1\}$$

$$\beta_{1i} = \alpha_{11} + \alpha_{12}LV_i + \alpha_{13}X_i^{Miss}$$

$$\beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}X_i^{Miss}$$

Choice situation is defined by 3 attributes

$$e_{iit} \sim EV_I(0,1)$$

$$\beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}X_i^{Miss}$$

$$\beta_{3i} = \exp(\alpha_{31} + \alpha_{32}LV_i + \alpha_{33}X_i^{Miss})$$

$$X_i^{Miss} \sim N(0,1)$$

Latent variable (structural component)

Indicator variables (measurement component)

$$LV_{i}^{*} = \alpha_{61}X_{i}^{SD} + \alpha_{62}X_{i}^{Miss} + \xi_{i}$$

$$\xi_{i} \sim N(0,1)$$

$$X_{i}^{SD} \sim N(0,1)$$

$$I_{i1} = \alpha_{41} + \alpha_{42}LV_{i} + \alpha_{43}\eta_{i1}$$

$$I_{i2} = \alpha_{51} + \alpha_{52}LV_{i} + \alpha_{53}\eta_{i2}$$

$$\eta_{i1} \sim N(0,1)$$

$$\eta_{i2} \sim N(0,1)$$

Choice model

Utility function

$$V_{ijt} = \beta_{1i} SQ_{ijt} + \beta_{2i} Quality_{ijt} - \beta_{3i} Cost_{ijt} + e_{ijt} \qquad \beta_{1i} = \alpha_{11} + \alpha_{12} LV_i + \alpha_{13} X_i^{Miss}$$

Preference heterogeneity is driven by a latent variable and one observable variable

$$COSi_{ijt} \sim O(0,2)$$

$$e_{ijt} \sim EV_I(0,1)$$

 $\beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}X_i^{Miss}$ $\beta_{3i} = \exp(\alpha_{31} + \alpha_{32}LV_i + \alpha_{33}X_i^{Miss})$ $X_i^{Miss} \sim N(0,1)$

Latent variable (structural component)

Indicator variables (measurement component)

$$LV_{i}^{*} = \alpha_{61}X_{i}^{SD} + \alpha_{62}X_{i}^{Miss} + \xi_{i}$$

$$\xi_{i} \sim N(0,1)$$

$$X_{i}^{SD} \sim N(0,1)$$

$$I_{i1} = \alpha_{41} + \alpha_{42}LV_{i} + \alpha_{43}\eta_{i1}$$

$$I_{i2} = \alpha_{51} + \alpha_{52}LV_{i} + \alpha_{53}\eta_{i2}$$

$$\eta_{i1} \sim N(0,1)$$

$$\eta_{i2} \sim N(0,1)$$

$$I_{i2} = \alpha_{51} + \alpha_{52}LV_i + \alpha_{53}\eta_{i2}$$

$$\eta_{i1} \sim N(0,1)$$

$$\eta_{i2} \sim N(0,1)$$

Utility function

$V_{ijt} = \beta_{1i}SQ_{ijt} + \beta_{2i}Quality_{ijt} - \beta_{3i}Cost_{ijt} + e_{ijt} \qquad \beta_{1i} = \alpha_{11} + \alpha_{12}LV_i + \alpha_{13}X_i^{Miss}$ $SQ_{ijt} \in \{0,1\} \qquad \beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}X_i^{Miss}$ $Quality_{ijt} \sim U(0,2) \qquad \beta_{3i} = \exp(\alpha_{31} + \alpha_{32}LV_i + \alpha_{33}X_i^{Miss})$ $Cost_{...} \sim U(0,2) \qquad X_i^{Miss} \sim N(0,1)$

Choice model

Latent variable is correlated with some observable variables

(structural component)

$$LV_{i}^{*} = \alpha_{61}X_{i}^{SD} + \alpha_{62}X_{i}^{Miss} + \xi_{i}$$
$$\xi_{i} \sim N(0,1)$$
$$X_{i}^{SD} \sim N(0,1)$$

$$I_{i1} = \alpha_{41} + \alpha_{42}LV_i + \alpha_{43}\eta_{i1}$$

$$I_{i2} = \alpha_{51} + \alpha_{52}LV_i + \alpha_{53}\eta_{i2}$$

$$\eta_{i1} \sim N(0,1)$$

$$\eta_{i2} \sim N(0,1)$$

Choice model

Utility function

$$V_{ijt} = \beta_{1i}SQ_{ijt} + \beta_{2i}Quality_{ijt} - \beta_{3i}Cost_{ijt} + e_{ijt} \qquad \beta_{1i} = \alpha_{11} + \alpha_{12}LV_i + \alpha_{13}X_i^{Miss}$$

$$SQ_{ijt} \in \{0,1\} \qquad \qquad \beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}X_i^{Miss}$$

$$Quality_{ijt} \sim U(0,2) \qquad \qquad \beta_{3i} = \exp\left(\alpha_{31} + \alpha_{32}LV_i + \alpha_{33}X_i^{Miss}\right)$$

$$Cost_{ijt} \sim U(0,2) \qquad \qquad V^{Miss} = N(0,1)$$
We assume that instead of LV we observe two

Latent variable (structural component)

$$LV_{i}^{*} = \alpha_{61}X_{i}^{SD} + \alpha_{62}X_{i}^{Miss} + \xi_{i}$$
$$\xi_{i} \sim N(0,1)$$
$$X_{i}^{SD} \sim N(0,1)$$

$$eta_{3i} = \exp\left(lpha_{31} + lpha_{32}LV_i + lpha_{33}X_i^{Miss}
ight)$$

We assume that instead of LV we observe two indicator variables

(measurement component)

 $\beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}X_i^{Miss}$

$$I_{i1} = \alpha_{41} + \alpha_{42}LV_i + \alpha_{43}\eta_{i1}$$

$$I_{i2} = \alpha_{51} + \alpha_{52}LV_i + \alpha_{53}\eta_{i2}$$

$$\eta_{i1} \sim N(0,1)$$

$$\eta_{i2} \sim N(0,1)$$

We induce endogeneity in the simulation by having a missing variable which
U affects choices both directly and indirectly (through latent variable)

Choice model

$$V_{ijt} = \beta_{1i}SQ_{ijt} + \beta_{2i}Quality_{ijt} - \beta_{3i}Cost_{ijt} + e_{ijt} \qquad \beta_{1i} = \alpha_{11} + \alpha_{12}LV_i + \alpha_{13}X_i^{Miss}$$

$$SQ_{ijt} \in \{0,1\} \qquad \beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}X_i^{Miss}$$

$$Quality_{ijt} \sim U(0,2) \qquad \beta_{3i} = \exp(\alpha_{31} + \alpha_{32}LV_i + \alpha_{33}X_i^{Miss})$$

$$Cost_{ijt} \sim U(0,2) \qquad X_i^{Miss} \sim N(0,1)$$

$$e_{ijt} \sim EV_I(0,1)$$

Latent variable (structural component)

Indicator variables (measurement component)

$$LV_{i}^{*} = \alpha_{61}X_{i}^{SD} + \alpha_{62}X_{i}^{Miss} + \xi_{i}$$

$$\xi_{i} \sim N(0,1)$$

$$X_{i}^{SD} \sim N(0,1)$$

$$I_{i1} = \alpha_{41} + \alpha_{42}LV_{i} + \alpha_{43}\eta_{i1}$$

$$I_{i2} = \alpha_{51} + \alpha_{52}LV_{i} + \alpha_{53}\eta_{i2}$$

$$\eta_{i1} \sim N(0,1)$$

$$\eta_{i2} \sim N(0,1)$$

- Estimated models:
 - Base models allow us to check whether simulation works properly, and the extent of a measurement bias:

	Model type	Measurement error	Endogeneity	Description
Model 1	Hybrid MNL	No	No	No missing variables
Model 2	MNL	Yes	No	No missing variables, indicator variables entering directly

- Next we analyze the extent of error arising due to:
 - Endogeneity and measurement bias jointly
 - Endogeneity bias and ignoring the preference heterogeneity
 - Endogeneity bias

	Model type		Endogeneity	Description		
		error		<u>-</u>		
Model 3	MXL	Yes	Yes	missing variable, random parameters		
Wiodel 3	WIXL	108	TCS	indicator variables entering directly		
Model 4	Hybrid MNL	Controlled	Yes	missing variable		
Model 5	Hybrid MXL	Controlled	Yes	missing variable, random parameters		

• These are models which are most likely to be used by researchers

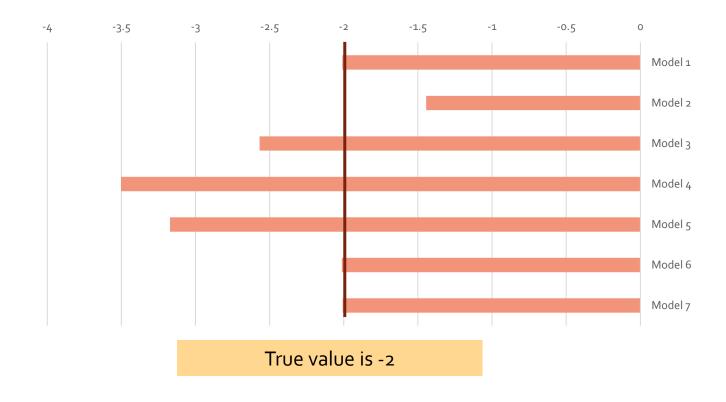
 In Model 5 we add correlated random parameters to account for unobserved preference heterogeneity caused by omitted variable

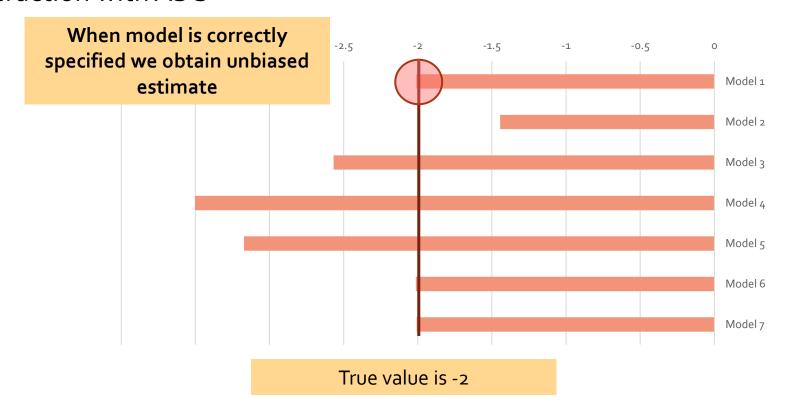
$$\begin{cases} V_{ijt} = \beta_{1i} SQ_{ijt} + \beta_{2i} Quality_{ijt} - \beta_{3i} Cost_{ijt} + e_{ijt} \\ \beta_{1i} = \alpha_{11} + \alpha_{12} LV + \beta_{1i}^* \\ \beta_{2i} = \alpha_{21} + \alpha_{22} LV + \beta_{2i}^* \\ \beta_{3i} = \exp(\alpha_{31} + \alpha_{32} LV + \beta_{3i}^*) \\ LV_i = \alpha_{61} X_i^{SD} + \xi_i^{**} \end{cases},$$

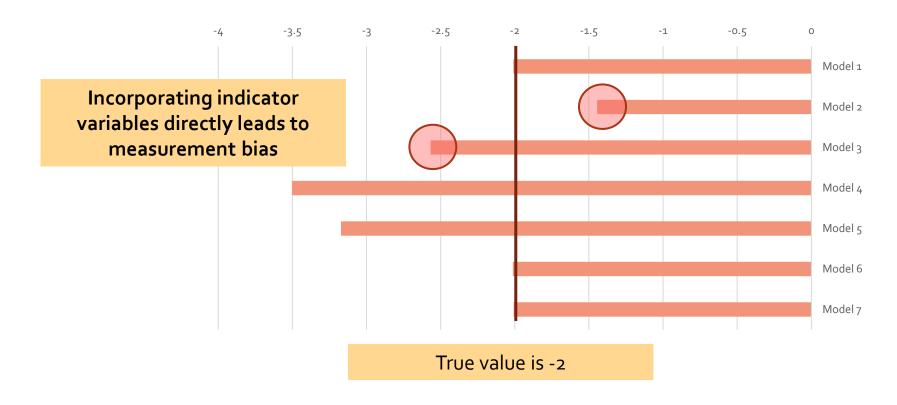
- Lastly, we propose two different methods to mitigate endogeneity bias:
 - Directly modeling the correlation between latent factor and random parameters
 - Incorporating additional latent variable to account for residual correlation between error terms

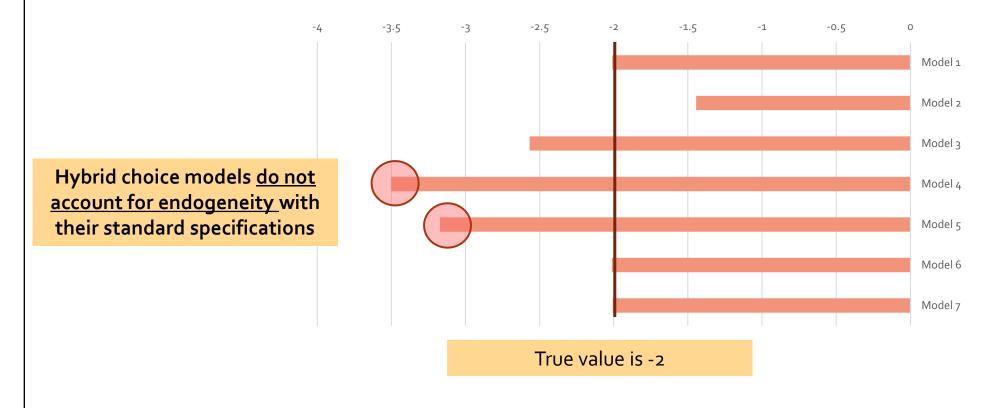
	Model type	Measurement error	Endogeneity	Description
Model 6	Hybrid MXL	Controlled	Controlled	missing variable, random parameters, additional correlation
Model 7	Hybrid MNL	Controlled	Controlled	missing variable, additional LV in model specification

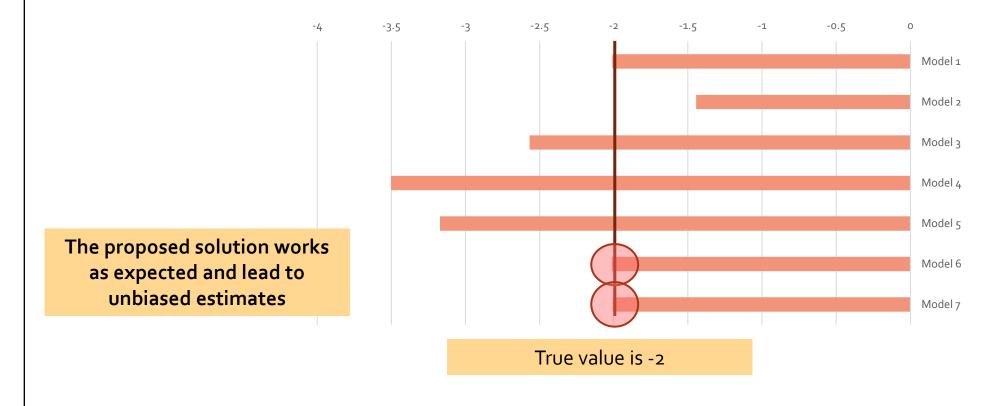
• Model 7 utilizes the fact that the two formulations below are equivalent


(A)


(B)


$$\begin{cases} V_{ijt} = \beta_{1i}SQ_{ijt} + \beta_{2i}Quality_{ijt} - \beta_{3i}Cost_{ijt} + e_{ijt} \\ \beta_{1i} = \alpha_{11} + \alpha_{12}LV_i + \alpha_{13}X_i^{Miss} \\ \beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}X_i^{Miss} \\ \beta_{3i} = \exp\left(\alpha_{31} + \alpha_{32}LV_i + \alpha_{33}X_i^{Miss}\right) \\ LV_i = \alpha_{61}X_i^{SD} + \alpha_{62}X_i^{Miss} + \xi_i \\ I_{i1} = \alpha_{41} + \alpha_{42}LV_i + \alpha_{53}\eta_{i2} \end{cases}$$


$$\begin{cases} V_{ijt} = \beta_{1i}SQ_{ijt} + \beta_{2i}Quality_{ijt} - \beta_{3i}Cost_{ijt} + e_{ijt} \\ \beta_{1i} = \alpha_{11} + \alpha_{12}LV_i + \alpha_{13}^*X_i^{Miss} \\ \beta_{2i} = \alpha_{21} + \alpha_{22}LV_i + \alpha_{23}^*X_i^{Miss} \\ \beta_{3i} = \exp\left(\alpha_{31} + \alpha_{32}LV_i + \alpha_{33}^*X_i^{Miss}\right) \\ LV_i = \alpha_{61}X_i^{SD} + \xi_i \\ I_{i1} = \alpha_{41} + \alpha_{42}LV_i + \alpha_{43}^*X_i^{Miss} + \alpha_{43}^*\eta_{i1} \\ I_{i2} = \alpha_{51} + \alpha_{52}LV_i + \alpha_{53}^*\eta_{i2} \end{cases}$$


And then impute additional LV for the missing variable

- We obtain the same results for other coefficients measuring effect of the LV on choices
 - In many cases, for models which do not control for endogeneity, other coefficients are biased as well
- We observe analogous results for the M-endogeneity
 - The exception is that Model 6 no longer recovers true values of the parameters

- In stated preference research the main variable of interest is willingness to pay (WTP)
- If we have a following utility function:

$$V_{ijt} = \beta_{1i} SQ_{ijt} + \beta_{2i} Quality_{ijt} - \beta_{3i} Cost_{ijt} + e_{ijt}$$

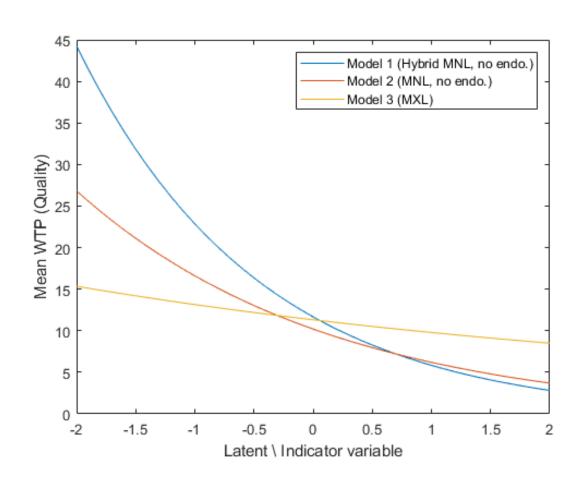
• Then the WTP for the unit increase of *Quality* will be given by

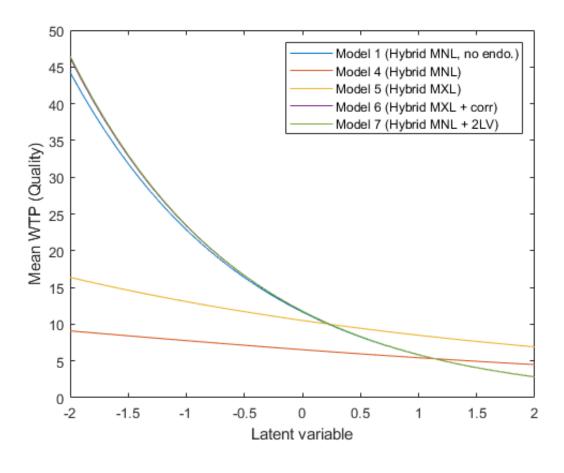
$$WTP_{2i} = \frac{\beta_{2i}}{\beta_{3i}}$$

As WTP follows certain distribution, we usually estimate its mean

• We can check how the analyzed models perform in terms of recovering mean WTP

	True mean WTP	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
Model		Hybrid MNL	MNL	MXL	Hybrid MNL	Hybrid MXL	Hybrid MXL	Hybrid MNL, 2LV
Endogenei	ty	No	No	Yes	Yes	Yes	Yes, controlled	Yes, controlled
Measurem	ent error	No	Yes	Yes	No	No	No	No
\overline{SQ}	-7.33	-7.668*	-9.184	-8.34	-3.616	-7.874*	-7.445**	-7.743*
Quality	10.324	10.697**	14.171	11.506	6.601	10.790*	9.979**	10.732**


• We can check how the analyzed models perform in terms of recovering mean WTP


	True mean WTP	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
Model		Hybrid MNL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ls 1, 6 an	T/T	Hybrid MNL, 2LV
Endogenei	ty	No	No	1	mean W ⁻	ГР	es,	Yes, controlled
Measurem	ant arror	No	Yes	Yes	No	No	No	No
wieasui em	CIII CII OI	110	103	103	110	110	110	
$\frac{Neasurem}{SQ}$	-7.33	-7.668*	-9.184	-8.34	-3.616	-7.874*	-7.445**	-7.743*
							<u> </u>	

• We can check how the analyzed models perform in terms of recovering mean WTP

ModelHybrid MNLMNLModel 5 is also not far off from true valuesbrid XLMNL 2LVEndogeneityNoNoYesYesYes, controlled controllMeasurement errorNoYesYesNoNoNoNo SQ -7.33-7.668*-9.184-8.34-3.616-7.874*-7.445**-7.743		True mean WTP	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
Endogeneity No No Yes Yes Yes Yes Controlled	Model		MNI MINI MODELLA STATE				Hybrid MNL, 2LV		
SQ -7.33 -7.668* -9.184 -8.34 -3.616 -7.874* -7.445** -7.743	Endogene	ity	No	No	Yes	Yes	Yes	,	/
	Measuren	ent error	No	Yes	Yes	No	No	No	No
Quality 10.324 10.697** 14.171 11.506 6.601 10.790* 9.979** 10.732*	\overline{SQ}	-7.33	-7.668*	-9.184	-8.34	-3.616	-7.874*	-7.445**	-7.743*
	Quality	10.324	10.697**	14.171	11.506	6.601	10.790*	9.979**	10.732**

- When working with HC models the main goal is usually to find how WTP is affected by a given LV
 - One can actually estimate regular choice model without LVs and indicator variables to obtain mean WTP estimate
 - It would constitute a reduced-form model of HCM
- We can test how well different specifications recover this relationship

Simulation results - summary

- Usually used specifications of HCMs do not account for the endogeneity of indicator variables
 - May be sufficient to estimate mean WTP
 - Nonetheless, they do not properly recover the true relationship between WTP and LV
- Measurement bias can be substantial
 - Even with continuous indicator variables
- Possible solutions
 - Allowing for correlation between error terms in structural equations and choice model may help
 - Additional Latent Variables to capture residual correlation
 - Identification may be impossible, particularly with the two-step estimation procedure

ENDOGENEITY OF SELF-REPORTED CONSEQUENTIALITY IN STATED PREFERENCE STUDIES

Wiktor Budziński, Mikołaj Czajkowski, Ewa Zawojska

Stated preference methods

- Widely used to measure the value of non-market goods, especially public goods
- In transportation, marketing, health, culture, environmental economics, ...
- Based on surveys
- Many advantages:
 - Capture use and passive-use values
 - Go beyond the scope of the existing data
- But also important disadvantages:
 - Not based on market behavior
 - Might be viewed as not related to direct consequences
 - Incentive properties insufficiently understood

Conditions for truthful preference disclosure

(Carson and Groves 2007; Carson et al. 2014; Vossler et al. 2012)

One of the conditions requires the survey consequentiality

A necessary condition for truthful preference disclosure:

Consequentiality

- "a survey's results are seen by the agent as <u>potentially influencing</u> an agency's actions and the agent cares about the outcomes of those actions" (Carson and Groves 2007)
- "an individual faces or perceives a nonzero probability that their responses will <u>influence decisions</u> related to the outcome in question and they will be <u>required to pay for that outcome</u>"

(Contemporary Guidance for Stated Preference Studies, Johnston et al. 2017)

policy consequentiality

payment consequentiality

Other dimensions of consequentiality? E.g., pivotality?

Endogeneity of consequentiality perceptions

explored in previous studies

- Herriges et al. (2010) an exogenous information treatment and a Bayesian treatment-effect model; <u>importance of controlling for endogeneity</u>
- <u>No significant problem of endogeneity</u> especially in studies using sociodemographics as instruments:
 - Vossler et al. (2012) a generalized method of moments over-identification test
 - Interis and Petrolia (2014) a two-step instrumental variable probit model
- Groothuis et al. (2017) a bivariate probit approach; <u>perceived consequentiality</u> <u>found to be endogenous</u>; unobserved factors strengthen the consequentiality and decrease the likelihood of voting for the program
- Lloyd-Smith et al. (2019) a special multi-step estimator for a scaled probit model; importance of controlling for endogeneity; with no endogeneity control, perceived consequentiality affects voting behavior, but the effect disappears with the special regressor

Endogeneity of consequentiality perceptions

explored in previous studies

- Herriges et al. (2010) an exogenous information treatment and a Bayesian treatment-effect model; importance of controlling for endogeneity
- No significant problem of endogene Limitations: demographics as instruments:
 - Vossler et al. (2012) a generalized m
 - Interis and Petrolia (2014) a two-ste
- Groothuis et al. (2017) a bivariate p <u>found to be endogenous</u>; unobserve decrease the likelihood of voting for

- Little evidence very few studies
- Mixed evidence
- Step-wise procedures
- Do not account for the measurement error
- Single indicator (measurement) questions for consequentiality
- Lloyd-Smith et al. (2019) a special multi-step estimator for a scaled probit model; importance of controlling for endogeneity; with no endogeneity control, perceived consequentiality affects voting behavior, but the effect disappears with the special regressor

Endogeneity control in hybrid choice models

Budziński and Czajkowski (2022)

Model 1

• Standard hybrid choice models do not resolve endogeneity

Solutions:

Model 2

- Directly modeling the correlation between latent
 variables and random parameters
 Model 3
- Adding a latent variable to capture the correlation caused by missing covariates

 These models correspond to Models 5, 6 and 7 from the simulation

Measurement equations

(ordered probit)

Latent variables influence self-reports about beliefs in survey consequentiality

Latent variables

Unobserved beliefs about survey consequentiality

Discrete choice model

(interactions in the mixed logit model)

Latent variables influence stated preferences

Discrete choice experiment

- Public-good scenario: Extension of public theater offer in Poland (a number of shows)
- 4 choice tasks per person; CAWI; a representative sample of 2,863 residents of Poland

	Variant A	Variant B No changes
Entertainment theaters	+ 25%	no change
Drama theaters	+ 50%	no change
Children's theaters	no change	no change
Experimental theaters	+ 50%	no change
Annual cost for you (tax)	50 PLN	o PLN
Your choice		
	Drama theaters Children's theaters Experimental theaters Annual cost for you (tax)	Entertainment theaters + 25% Drama theaters + 50% Children's theaters no change Experimental theaters + 50% Annual cost for you (tax) 50 PLN

+ 25%, + 50%, no change 5, 10, 20, 50 PLN

Consequentiality elicitation

- Randomized statements assessed on a Likert scale with seven levels: from 'definitely disagree' to 'definitely agree' + don't know
- Used in the measurement \rightarrow 9 ordered probit models as measurement equations

I think that ...

- [1] ... by participating in this survey, I will have influence on the future theater offer.
- [2] ... the results of this survey will determine if to change the theater offer.
- [3] ... the results of this survey will be used to decide if to change the theater offer.
- [4] ... if the theater offer is decided to be changed, the results of this survey will be used to decide which type of shows will be played more and less.
- [5] ... the increase of the theater offer as described in this survey is possible to be implemented.
- [6] ... a decision to expand the theater offer will indeed result in more shows and premiers, as described in this survey.
- [7] ... a decision to expand the theater offer will indeed result in higher (tax) fees, which will increase my household expenditures, as described in this survey.
- [8] ... I am one of many people participating in this survey, so my responses do not have a chance to affect the survey final results.
- [9] ... a decision whether to change the theater offer will be taken independently of the survey results.

Results

Measurement equations

(ordered probit)

Latent variables influence self-reports about beliefs in survey consequentiality

Model 1	Model 2	Model 3
Standard	Corr. LVs and random parameters	+ 1 LV

Latent variables

Unobserved beliefs about survey consequentiality


Discrete choice model

(interactions in the mixed logit model)

Latent variables influence stated preferences

How many latent variables to include?

How many dimensions of consequentiality do we have?

Results

Measurement equations

(ordered probit)

Latent variables influence self-reports about beliefs in survey consequentiality

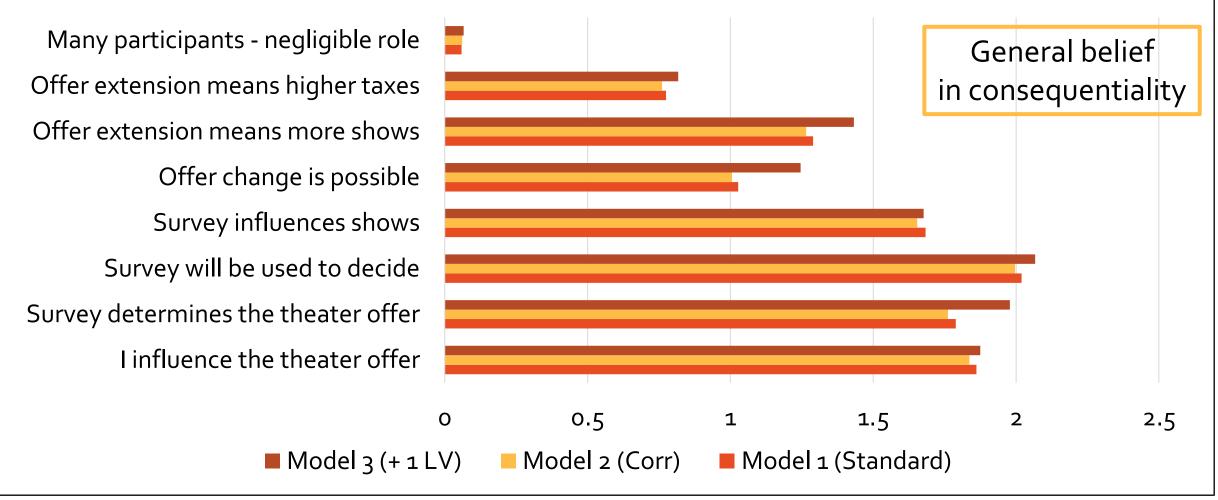
Latent variables

Unobserved beliefs about survey consequentiality

Discrete choice model

(interactions in the mixed logit model)

Latent variables influence stated preferences

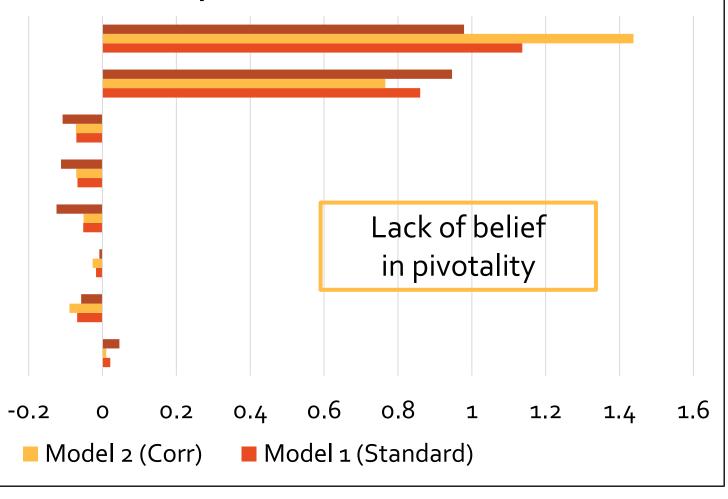

	Model 1	Model 2	Model 3
	Standard	Corr. LVs and random parameters	+ 1 LV
LL	-38,620.1	-38,564.6	-38,465.4
AIC/n	6.764	6.756	6.739
		\longrightarrow $-$	\longrightarrow
		better	even better

- Responses to consequentiality statements are explained with latent variables
- Two latent variables (LVs) expressing perceived consequentiality:
 - General belief in consequentiality
 - Lack of belief in pivotality

Results: Measurement equations

Ordered probits

Coefficients on how LV1 explains each statement

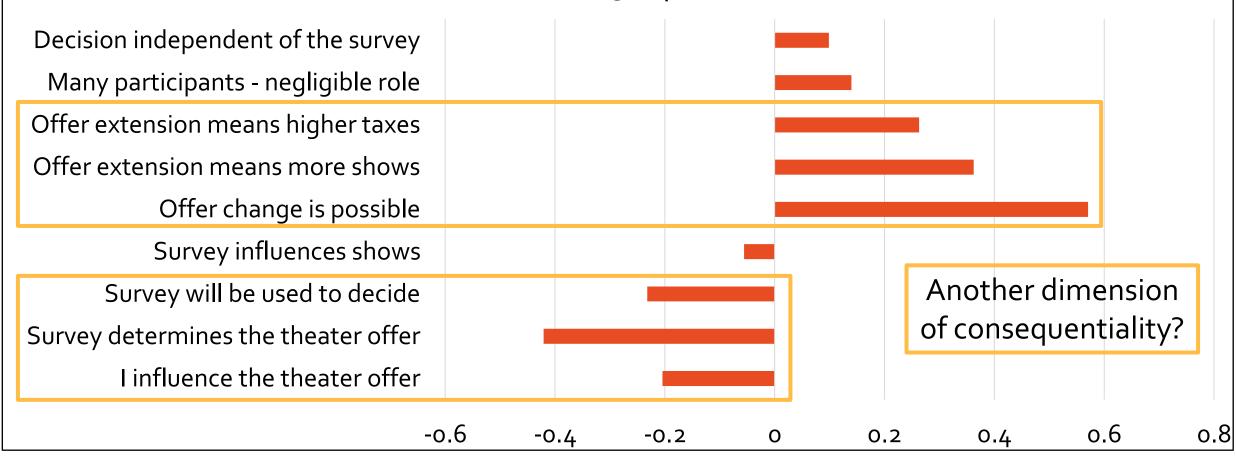

Results: Measurement equations

■ Model 3 (+ 1 LV)

Ordered probits

Coefficients on how LV2 explains each statement

Decision independent of the survey Many participants - negligible role Offer extension means higher taxes Offer extension means more shows Offer change is possible Survey influences shows Survey will be used to decide Survey determines the theater offer



Results: Measurement equations

Ordered probits

Additional latent variable in Model 3 (+ 1 LV) to control endogeneity

Coefficients on how LV3 explains each statement

Results

Measurement equations

(ordered probit)

Latent variables influence self-reports about beliefs in survey consequentiality

Latent variables

Unobserved beliefs about survey consequentiality

Discrete choice model

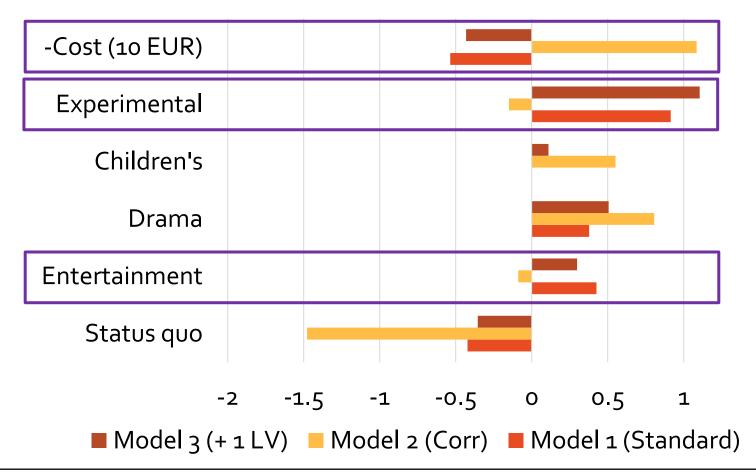
(interactions in the mixed logit model)

Latent variables influence stated preferences

	Model 1	Model 2	Model 3
	Standard	Corr. LVs and random parameters	+ 1 LV
LL	-38,620.1	-38,564.6	-38,465.4
BIC/n	6.834	6.835	6.819
		better	even better

- Two latent variables (LVs) expressing perceived consequentiality:
 - General belief in consequentiality
 - Lack of belief in pivotality

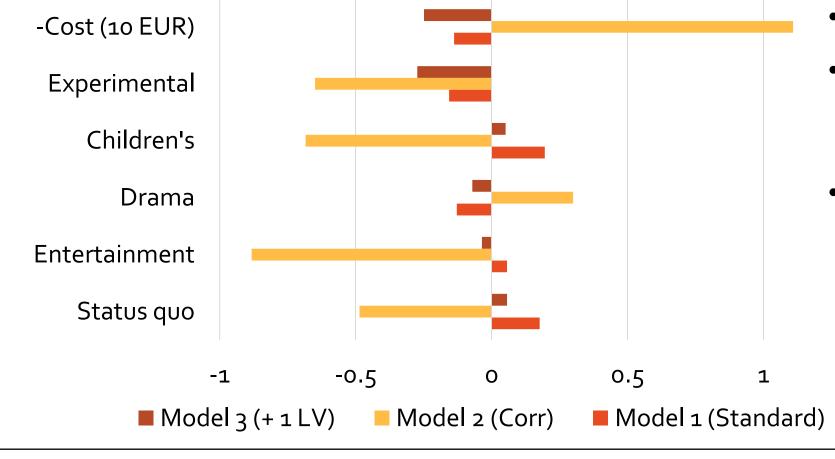
Mixed logits with means interacted with LVs


Mean coefficient estimates

	Model 1	Model 2	Model 3
	Standard	Corr. LVs and random parameters	+ 1 LV
Status quo	0.4719***	0.4459***	0.4711***
Entertainment	0.8926***	0.999***	0.9151***
Drama	0.5769**	0.464*	0.4259
Children's	0.1364	0.1099	0.0443
Experimental	-0.4336	-0.502*	-0.409
- Cost (10 EUR)	3.7752***	3.8161***	3.6282***

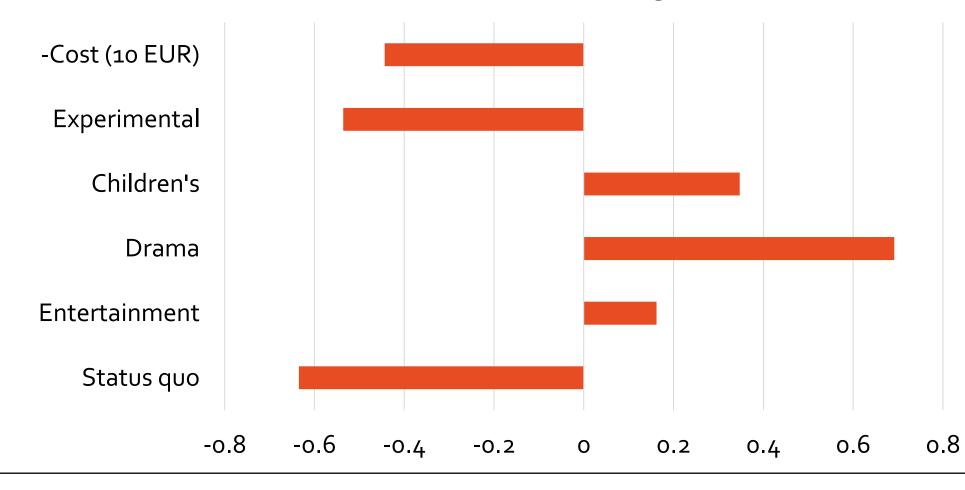
- Preference parameters are random
- For all, standard deviations are (highly) significant
- Mean coefficient estimates are similar across models

Mixed logits with means interacted with LVs


Coefficients of interactions of means with LV1 (general consequentiality)

- Model 2 (Corr) leads to identification of quite different effects from Model 1
- Model 3 (+1 LV) seems to result in very similar results to Model 1
 - Maybe another consequentiality dimension? Does not fully account for residual correlation

Mixed logits with means interacted with LVs


Coefficients of interactions of means with LV2 (pivotality)

- Similar findings
- Endogeneity control in Model 2 matters for many attributes
- In Model 3, maybe another latent factor is needed?

Mixed logits with means interacted with LVs

Coefficients of interactions of means with LV₃

Closing thoughts

- Accounting for endogeneity matters
- The proposed solutions works well when we have well defined latent constructs
- No theory regarding dimensions of consequentiality (or other attitudes captured)
 - This could guide designing indicator questions to elicit respondents' perceptions
 - No construct validity
 - Theory does not predict what effect on preferences we should expect
- Maybe use some algorithm to find proper specification, similar to:
 - Paz, Alexander, Cristian Arteaga, and Carlos Cobos. "Specification of mixed logit models assisted by an optimization framework." Journal of choice modelling 30 (2019): 50-60.
- Some problems with the interpretation of the additional LV
- Maybe the issue is in the lack of variables in the structural equations for the latent factors

THANK YOU!

Wiktor Budziński, Mikołaj Czajkowski, Ewa Zawojska

University of Warsaw, Faculty of Economic Sciences 🧀

