Information, consequentiality and credibility in stated preferences

A choice experiment on climate adaptation

25-06-2020

Malte Welling

IÖW – Institute for Ecological Economy Research, Berlin Brandenburg University of Technology, Chair for Environmental Economics, Cottbus

Ewa Zawojska

University of Warsaw, Faculty of Economic Sciences, Warsaw

Julian Sagebiel

Technische Universität Berlin, Institute for Landscape Architecture and Environmental Planning, Berlin

Information in stated preferences

- In stated preference surveys, respondents are usually provided information about the scenario and the good to be valued before preference elicitation
- Type and amount of information provided matters for the validity of value estimates

(Mitchell and Carson, 1989; Blomquist and Whitehead, 1998; Johnston et al., 2017)

- Extensive research on effects of information scripts:
 - Many find information scripts matter for value estimates. Additional information often increases willingness to pay.

(Munro and Hanley, 2001; Bateman and Mawby, 2004; Czajkowski et al., 2016)

- But some report mixed findings
 (Hoevenagel and Linden, 1993; MacMillan et al., 2006; Needham et al., 2018)
- → Better understanding of the mechanisms of information effects can deliver important insights for stated preference practitioners

Additional information scripts

Learning:

e.g. Munro & Hanley (2001)

Availability heuristic:

e.g. Hoevenagel & Linden (1993)

Context effect:

e.g. Liebe et. al (2016)

Experimenter demand effect:

e.g. Zizzo (2009)

Information, consequentiality, credibility

Perceived consequentiality:

Does the survey outcome influence the decision of policy makers?

Higher WTP when perceived as more consequential:

e.g. Groothuis et al. (2017) Vossler & Holladay (2018)

Information, consequentiality, credibility

Perceived credibility:

Is the proposed extent of the increase in the attributes credible?

Higher WTP when perceived as more credible: Kataria et al. (2012)

Additional information scripts

Perceived consequentiality:

Does the survey outcome influence the decision of policy makers?

Higher WTP when perceived as more consequential:

e.g. Groothuis et al. (2017) Vossler & Holladay (2018)

Learning:

e.g. Munro & Hanley (2001)

Availability heuristic:

e.g. Hoevenagel & Linden (1993)

Context effect:

e.g. Liebe et. al (2016)

Experimenter demand effect:

e.g. Zizzo (2009)

Willingness to pay

Perceived credibility:

Is the proposed extent of the increase in the attributes credible?

Higher WTP when perceived as more credible: Kataria et al. (2012)

Can shifts in the perceptions explain part of information effects?

To examine this, we address these questions:

Additional information scripts

Perceived consequentiality:

Does the survey outcome influence the decision of policy makers?

Learning:

e.g. Munro & Hanley (2001)

Availability heuristic:

e.g. Hoevenagel & Linden (1993)

Context effect:

e.g. Liebe et. al (2016)

Experimenter demand effect:

e.g. Zizzo (2009)

Willingness to pay

Perceived credibility:

Is the proposed extent of the increase in the attributes credible?

Higher WTP when perceived as more credible: Kataria et al. (2012)

Higher WTP when perceived as more consequential:

e.g. Groothuis et al. (2017) Vossler & Holladay (2018)

Can shifts in the perceptions explain part of information effects?

To examine this, we address these questions:

(1) Does the additional information script affect stated preferences?

Perceived consequentiality:

Does the survey outcome influence the decision of policy makers?

Higher WTP when perceived as more consequential:

e.g. Groothuis et al. (2017) Vossler & Holladay (2018)

Learning:

e.g. Munro & Hanley (2001)

Availability heuristic:

e.g. Hoevenagel & Linden (1993)

Context effect:

e.g. Liebe et. al (2016)

Experimenter demand effect:

e.g. Zizzo (2009)

Willingness to pay

Perceived credibility:

Is the proposed extent of the increase in the attributes credible?

Higher WTP when perceived as more credible: Kataria et al. (2012)

Can shifts in the perceptions explain part of information effects? To examine this, we address these questions:

- (1) Does the additional information script affect stated preferences?
- (2) Does the additional information script affect perceptions?

Perceived consequentiality.

Does the survey outcome influence the decision of policy makers?

Availability heuristic:

e.g. Hoevenagel & Linden (1993)

Context effect:

e.g. Liebe et. al (2016)

Experimenter demand effect:

Higher WTP when perceived as more credible: Kataria et al. (2012)

Perceived credibility:

Is the proposed extent of the

increase in the attributes credible?

e.g. Zizzo (2009)

Willingness to pay

Higher WTP when perceived as more consequential:

e.g. Groothuis et al. (2017) Vossler & Holladay (2018)

Can shifts in the perceptions explain part of information effects?

To examine this, we address these questions:

- (1) Does the additional information script affect stated preferences?
- (2) Does the additional information script affect perceptions?

Perceived consequentiality

Does the survey outcome influence the decision of polic makers?

Availability bauriatio

(3) Do stated preferences vary with perceptions?

Context effect:

e.g. Liebe et. al (2016)

Experimenter demand effect:

e.g. Zizzo (2009)

Higher WTP when perceived as more credible: Kataria et al. (2012)

Perceived credibility:

Is the proposed extent of the

increase in the attributes credible?

Higher WTP when perceived as more consequential:

e.g. Groothuis et al. (2017) Vossler & Holladay (2018)

Can shifts in the perceptions explain part of information effects?

To examine this, we address these questions:

- (1) Does the additional information script affect stated preferences?
- (2) Does the additional information script affect perceptions?

Does the survey outcome (2) Do stated professore

- (3) Do stated preferences vary with perceptions?
- (4) Can part of the information effect be assigned to shifts in perceptions?

J.g. ZIZZU (ZUUS)

as more consequential:

influence the decision of polic

makers?

e.g. Groothuis et al. (2017) Vossler & Holladay (2018)

11

Willingness to pay

Perceived credibility:

Is the proposed extent of the increase in the attributes credible?

Higher WTP when perceived as more credible:

Kalaria et al. (2012)

- The city of Bremen adopted a climate adaptation strategy that contains urban green measures for climate adaptation: street trees, green spaces, green roofs
- Choice experiment with the urban green adaptation measures as attributes
- April May 2019
- Computer-Assisted Web Interviews
- Sample: 1,178 residents of Bremen and surroundings

Study design: choice tasks

9 choice tasks per respondent:

	Combination A	Combination B	Current state
Street trees	+ 1 tree per 100 meters of a street	+ 2 trees per 100 meters of a street	As today
Green areas	+ 1% of the city area is green spaces	As today	As today
Extensive green roofs	+ 5 out of 100 roofs are extensive green roofs	+ 10 out of 100 roofs are extensive green roofs	As today
Intensive green roofs	As today	+ 2 out of 100 roofs are intensive green roofs	As today
Cost for you per year	€20	€5	€0
Which option do you choose?			

Note: The tasks were originally displayed in German.

Study design: treatment

All respondents were provided with information about the attributes and their benefits.

Half of respondents were provided an additional information script:

No Script sample

X

The first part of this survey focuses on possible urban green measures for the city of Bremen.

Script sample

The Senate of Bremen adopted the climate change adaptation strategy for Bremen in April 2018. The strategy document explains the consequences of climate change for the city of Bremen. Strong rain, river and storm floods will become more likely. The strategy document predicts a rising risk of flooding with property damages, such as flooded basements and underground garages. Also heat waves will become more likely according to the strategy document. These can reduce your productivity and strain your cardiovascular system.

The climate change adaptation strategy mentions several measures which the city of Bremen could apply. The first part of this survey focuses on some of these measures.

Study design: elicitation of perceptions

Two consequentiality perception indicators:

Policy consequentiality: "To what degree do you believe that your responses will affect which measures will be implemented in the city of Bremen?"

Payment consequentiality: "To what degree do you believe that your responses will affect whether you will have to pay the additional cost if the measures are implemented?"

Six-point Likert scale "I strongly believe" – "I do not believe at all" and "I do not know"

Four credibility perception indicators:

For each of the four non-cost attributes: "How likely do you think it is that the proposed extent of the changes can actually be realized?"

Six-point Likert scale "very likely" – "very unlikely" and "I do not know"

Econometric approach

Model I: Mixed Logit in willingness to pay space

Script interactions with the mean preference parameters

(1) Does the additional information script affect stated preferences?

Model II: Hybrid Mixed Logit in willingness to pay space

Measurement equations: Ordered Probit

Latent Variable 1 as explanatory variable for credibility indicators LV 2 as explanatory variable for consequentiality indicators

Structural equations: Linear regression

Information script as explanatory variable for both latent variables

(2) Does the additional information script affect perceptions?

Choice model: Mixed Logit in willingness to pay space

Latent variable interactions with mean preference parameters

(3) Do stated preferences vary with perceptions?

(4) Can part of the information effect be assigned to shifts in perceptions?

Results

	Model I: Mixed Logit WTP space	Model II: Hybrid Mixed Logit WTP space
LL at convergence	-7854	-17256
LL at constants only	-11442	-21410
McFadden's pseudo-R ²	0.314	0.194
Ben-Akiva-Lerman's pseudo-R ²	0.495	0.494
AIC/n	1.488	3.270
BIC/n	1.511	3.323
Observations	10602	10602
Respondents	1178	1178
parameters	33	77

Estimation method for both models: simulated maximum likelihood with 10,000 Sobol draws

Results: information effect on preferences

	<u>ivioder i</u> : iviixed Logit in wrre space			
	Mean WTP	Standard Deviations	script interaction for means	
Street trees (+1 per 100 meter street)	29.12 (2.42) ***	47.82 (2.47) ***	7.47 (3.12) **	
Extensive green roofs (+1 of 100 roofs)	1.74 (0.42) ***	3.96 (0.44) ***	0.78 (0.48)	
Intensive green roofs (+1 of 100 roofs)	11.64 (1.95) ***	22.58 (2.12) ***	4.51 (2.30) *	
Green space (+ 1 % of city area)	23.35 (2.88) ***	52.17 (2.88) ***	6.57 (3.71) *	
Status quo	- 20.28 (1.03) ***	23.64 (1.16) ***	- 7.48 (1.12) ***	
- Cost (1000 EUR)	3.00 (0.06) ***	1.10 (0.07) ***	- 0.10 (0.07)	

^{***, **,} and * indicate 1%, 5%, and 10% significance levels, respectively. Standard errors are given in brackets.

(1) Does an additional information script affect stated preferences?

- In the script sample, WTP for attributes is larger and disutility from the status quo higher
- But only for status quo the effect is strongly significant

Results: information effect on perceptions

Model II: Hybrid mixed logit – Structural equations

Dependent variable LV 1 credibility consequentiality

Information script - 0.084 (0.035) ** - 0.041 (0.040)

(2) Does an additional information script affect perceptions?

- The information script strengthens perceived credibility significantly
- The information script does not strengthen perceived consequentiality significantly

***, **, and * indicate 1%, 5%, and 10% significance levels, respectively. Standard errors are given in brackets.

Measurment equation for	: Cred Tree (Ordered Prob	it)	Measurment equation for	or: Cred_Int (Ordere	d Probit	:)
var.	coef. st.err.	p-value	var.	coef.	st.err.	p-value
LV 1	-0.4730*** 0.0436	0.0000	LV 1	-1.4032***	0.1252	0.0000
Cutoff 1	-2.0319*** 0.0951	0.0000	Cutoff 1	-2.3247***	0.1529	0.0000
Cutoff 2	-0.7296*** 0.0282	0.0000	Cutoff 2	-0.2215***	0.0471	0.0000
Cutoff 3	-0.2895*** 0.0367	0.0000	Cutoff 3	0.8418***	0.1113	0.0000
Cutoff 4	1.3043*** 0.0408	0.0000	Cutoff 4	2.6955***	0.1102	0.0000
Measurment equation for	r: Cred Area (Ordered Prob	nit)	Measurment equation fo	or: Cons_pol (Ordere	d Probit	:)
var.	coef. st.err.	,	var.	coef.	st.err.	p-value
LV 1	-0.4098*** 0.0439		LV 2	-0.7941***	0.1264	0.0000
Cutoff 1	-1.6223*** 0.0673		Cutoff 1	-1.4179***	0.1067	0.0000
Cutoff 2	-0.5996*** 0.0526		Cutoff 2	0.1966	0.1633	0.2286
Cutoff 3	-0.0004 0.0509		Cutoff 3	0.9703***	0.2401	0.0001
Cutoff 4	1.5490*** 0.1176		Cutoff 4	2.3053***	0.3610	0.0000
Measurment equation for	: Cred Ext (Ordered Probi	it)	Measurment equation for	or: Cons_pay (Ordere	ed Probit	:)
var.	coef. st.err	•	var.	coef.	st.err.	p-value
LV 1	-1.4143*** 0.1342		LV 2	-1.1385***	0.2462	0.0000
Cutoff 1	-1.7087*** 0.1207		Cutoff 1	-2.0029***	0.2551	0.0000
Cutoff 2	0.3496*** 0.0497		Cutoff 2	-0.4287***	0.0558	0.0000
Cutoff 3	1.5170*** 0.0519		Cutoff 3	0.3318***	0.0559	0.0000
Cutoff 4	3.2065*** 0.1334		Cutoff 4	1.8067***	0.0672	0.0000

Results: role of perceptions for preferences

Model II: Hybrid Mixed Logit in WTP space

	Mean WTP	Standard Deviations	LV 1 interaction for means	LV 2 interaction for means
Street trees (+1 per 100 meter street)	28.57 (2.85) ***	45.96 (2.51) ***	- 8.55 (2.03) ***	- 10.05 (2.32) ***
Extensive green roofs (+1 of 100 roofs)	1.82 (0.44) ***	3.74 (0.44) ***	- 1.07 (0.30) ***	- 0.85 (0.34) ***
Intensive green roofs (+1 of 100 roofs)	11.89 (2.19) ***	23.24 (2.62) ***	- 4.40 (1.68) ***	- 4.79 (1.77) ***
Green space (+ 1 % of city area)	23.82 (3.19) ***	50.02 (2.55) ***	- 10.35 (2.44) ***	- 10.05 (2.32) ***
Status quo	- 20.14 (1.15) ***	21.48 (1.21) ***	6.24 (0.82) ***	6.55 (0.86) ***
- Cost (1000 EUR)	2.99 (0.06) ***	1.07 (0.08) ***	0.10 (0.04) **	0.22 (0.05) ***

(3) Do stated preferences vary with perceptions?

Strong credibility and consequentiality perceptions are associated with larger WTP for attributes and higher disutility from the status quo

Results: assessing the perceptions pathway

	Model I Mixed Logit in WTP space		Model II Hybrid Mixed Logit in WTP Space		
	Mean WTP	script interaction		script interaction for means	
Street trees (+1 per 100 meter street)	29.12 (2.42) ***	7.47 (3.12) **	28.57 (2.85) ***	6.43 (3.56) *	
Extensive green roofs (+1 of 100 roofs)	1.74 (0.42) ***	0.78 (0.48)	1.82 (0.44) ***	0.56 (0.53)	
Intensive green roofs (+1 of 100 roofs)	11.64 (1.95) ***	4.51 (2.30) *	11.89 (2.19) ***	3.67 (2.66)	
Green space (+ 1 % of city area)	23.35 (2.88) ***	6.57 (3.71) *	23.82 (3.19) ***	5.41 (4.02)	
Status quo	- 20.28 (1.03) ***	-7.48 (1.12) € ***	- 20.14 (1.15) ***	- 6.32 (1.44) ***	
- Cost (1000 EUR)	3.00 (0.06) ***	-0.10 (0.07)	2.99 (0.06) ***	- 0.09 (0.08)	

(4) Can part of the information effect be assigned to shifts in perceptions?

- Script coefficient is smaller when accounting for perceptions in Model II for all attributes and SQ, but difference is small and not statistically significant
- Robust difference between Script and No script sample remains at least for status quo

Results: summary

- Information effect is present: larger disutility from status quo, larger WTP for (at least some) attributes
- Our information script does not significantly affect perceived consequentiality
 - Not very surprising: even with targeted consequentiality scripts mixed findings about effect on consequentiality statements
- We can not confirm a credibility perceptions pathway in information effects, but find some indications for a small role:
 - Information script strengthens credibility perceptions
 - Credibility perceptions affect preferences
 - Accounting for perceptions might weakly decrease information effect

Disscusion

- More differentiated or extreme versions of script might give additional insight
 - Size of information effects can depend on factors like style of the information script and how extreme the script is
 - these could also influence the mechanism of information effects
- Endogeneity of perceptions as explanatory variables: Hybrid mixed logit model controls for measurement error, but not reverse causality or ommitted variables
- We used one latent variable for credibility perceptions and one for consequentiality perceptions: Previous research suggests two separate ones for policy and payment consequentiality. In our models, second LV for consequentiality seemed not to capture anything more.

Thank you.

Malte Welling

malte.welling@ioew.de

IÖW – Institute for Ecological Economy Research, Berlin Brandenburg University of Technology, Chair of Environmental Economics, Cottbus malte.welling@ioew.de

Ewa Zawojska

University of Warsaw, Faculty of Economic Sciences, Warsaw ewa.zawojska@uw.edu.pl

Julian Sagebiel

Technische Universität Berlin, Institute for Landscape Architecture and Environmental Planning, Berlin sagebiel@tu-berlin.de

Bateman, I.J., Mawby, J., 2004. First impressions count: Interviewer appearance and information effects in stated preference studies. Ecological Economics 49, 47–55. doi:10.1016/j.ecolecon.2003.12.006

Blomquist, G.C., Whitehead, J.C., 1998. Resource quality information and validity of willingness to pay in contingent valuation. Resource and Energy Economics 20, 179–196. doi:10.1016/S0928-7655(97)00035-3Czajkowski et al 2016

Groothuis, P.A., Mohr, T.M., Whitehead, J.C., Cockerill, K., 2017. Endogenous consequentiality in stated preference referendum data: The influence of the randomly assigned tax amount. Land Economics 93, 258–268. doi:10.3368/le.93.2.258

Hoevenagel, R., Linden, J. van der, 1993. Effects of different descriptions of the ecological good on willingness to pay values. Ecological Economics 7, 223–238. doi:10.1016/0921-8009(93)90005-Q

Johnston, R.J., Boyle, K.J., Adamowicz, W.(., Bennett, J., Brouwer, R., Cameron, T.A., Hanemann, W.M., Hanley, N., Ryan, M., Scarpa, R., Tourangeau, R., Vossler, C.A., 2017. Contemporary Guidance for Stated Preference Studies. Journal of the Association of Environmental and Resource Economists 4, 319–405. doi:10.1086/691697

Kataria, M., Bateman, I., Christensen, T., Dubgaard, A., Hasler, B., Hime, S., Ladenburg, J., Levin, G., Martinsen, L., Nissen, C., 2012. Scenario realism and welfare estimates in choice experiments – A non-market valuation study on the European water framework directive. Journal of Environmental Management 94, 25–33. doi:10.1016/j.jenvman.2011.08.010

Liebe, U., Hundeshagen, C., Beyer, H., Cramon-Taubadel, S. von, 2016. Context effects and the temporal stability of stated preferences. Social Science Research 60, 135–147. doi:10.1016/j.ssresearch.2016.04.013

MacMillan, D., Hanley, N., Lienhoop, N., 2006. Contingent valuation: Environmental polling or preference engine? Ecological Economics 60, 299–307. doi:10.1016/j.ecolecon.2005.11.031

Mitchell, R.C., Carson, R.T., 1989. Using surveys to value public goods: The contingent valuation method. Resources for the Future.

Munro, A., Hanley, N.D., 2001. Information, uncertainty, and contingent valuation, in: Valuing Environmental Preferences. Oxford University Press, pp. 258–279. doi:10.1093/0199248915.003.0009

Needham, K., Czajkowski, M., Hanley, N., LaRiviere, J., 2018. What is the causal impact of information and knowledge in stated preference studies? Resource and Energy Economics 54, 69–89.

Vossler, C.A., Watson, S.B., 2013. Understanding the consequences of consequentiality: Testing the validity of stated preferences in the field. Journal of Economic Behavior & Organization 86, 137–147.

Yang, Y., Hobbs, J.E., 2020. The power of stories: Narratives and information framing effects in science communication. American Journal of Agricultural Economics. doi:10.1002/ajae.12078

Zizzo, D.J., 2009. Experimenter demand effects in economic experiments. Experimental Economics 13, 75–98. doi:10.1007/s10683-009-9230-z