A novel, utility-based, discrete choice model of satisficing behavior

Wiktor Budziński, Mikołaj Czajkowski

Motivation

- Discrete choice models are frequently used to analyze individuals' preferences
 - They can identify various types of behavior from different data sources
 - They are not limited to the lab setting
- Nevertheless, most models employ a random utility specification
 - Assume that individuals are rational, evaluate all the alternatives and maximize their utility
 - Not very realistic in light of behavioral research
 - Allow for microeconomic inference
 - For example, welfare analysis using marginal rates of substitution, or willingness to pay
- Recently there is a growing interest in more behavioral models
 - Random regret minimization (Chorus et al., 2014)
 - Attribute-non-attendance (Scarpa et al., 2012)
 - Loss aversion (De Palma et al., 2008)
- Other heuristics are rarely investigated, as there is no modelling framework available

Satisficing

- Satisficing is a heuristics in which individual chooses alternative that is 'good enough'
 - Individuals do not necessarily maximize utility
 - They make decision based on some aspiration level of the objective function
- Information about all alternatives is not readily available
 - Discovered sequentially through a search process
 - Search can be costly (e.g. time/cognitive cost)
 - It can still lead to an optimal choice

Satisficing

- In discrete choice modelling literature there were three applications of this heuristic to date
 - Stüttgen, Boatwright and Monroe (2012)
 - Sandorf and Campbell (2018)
 - González-Valdés and de Dios Ortúzar (2018)
- Previous work employs attribute based inference
 - Individual choose first alternative for which all attributes levels meet given criteria
 - Or individuals may have criteria for only one attribute e.g. "Choose first alternative that is cheaper than X PLN"

- We propose a novel framework based on random utility model
- We assume that individual's utility from choosing given alternative is additive and includes stochastic component

$$U_{ij} = \mathbf{X}_{ij} \mathbf{\beta}_i + \mathcal{E}_{ij}$$

- We also assume that individuals have 'satisficing threshold', ST_i , which describes their aspiration level for utility
 - In the sense, we built upon previous work on choice set formation

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2

	Alternative 1	Alternative 2	Alternative 3	
Attribute 1	1	0	1	
Attribute 2	2	3	1	
Attribute 3	0	0	2	
$U_{i1} < ST_i$				

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2
	$U_{i1} < ST_i$	$U_{i2} > ST_i$	

	Alternative 1	Alternative 2	Alternative 3
Attribute 1	1	0	1
Attribute 2	2	3	1
Attribute 3	0	0	2
	$U_{i1} < ST_i$	$U_{i2} > ST_i$	Choice
)

• If none of the utilities exceed satisficing threshold, we assume that individual chooses the one with the highest utility

	Alternative 1	Alternative 2	Alternative 3	
Attribute 1	1	0	1	
Attribute 2	2	3	1	
Attribute 3	0	0	2	
Choice →	$U_{i1} < ST_i$	$U_{i2} < ST_i$	$U_{i3} < ST_i$	

If additionally: $U_{i1} > U_{i2} \wedge U_{i1} > U_{i3}$

$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right) \left(1 - \exp\left(-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) + \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i})}{\sum \exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i})}$$

$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \underbrace{\prod_{k=1}^{j-1} \exp(-\exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}))}_{k=1} \left(1 - \exp(-\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}))\right) + \prod_{k=1}^{K} \left(\exp(-\exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}))\right) \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i})}{\sum \exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i})}$$
Probability that $\sum_{k=1}^{K} \left(\exp(-\exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}))\right) \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i})}{\sum \exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i})}$
previous alternatives do not exceed the threshold

$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right) \left(1 - \exp\left(-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) + \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i})}{\sum \exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i})}$$

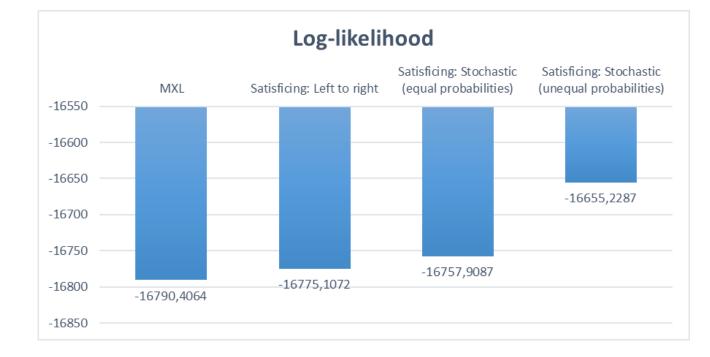
Probability that $- \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \frac{\exp(\mathbf{X}_{ij}\boldsymbol{\beta}_{i})}{\sum \exp(\mathbf{X}_{ik}\boldsymbol{\beta}_{i})}$
alternative *j* does
exceed the threshold

$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right) \left(1 - \exp\left(-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) + \left(\prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \sum_{k=1}^{K} \exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i}\right) - \sum_{k=1}^{K} \exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i}\right)$$
Probability that
none of the
alternatives exceed
the threshold

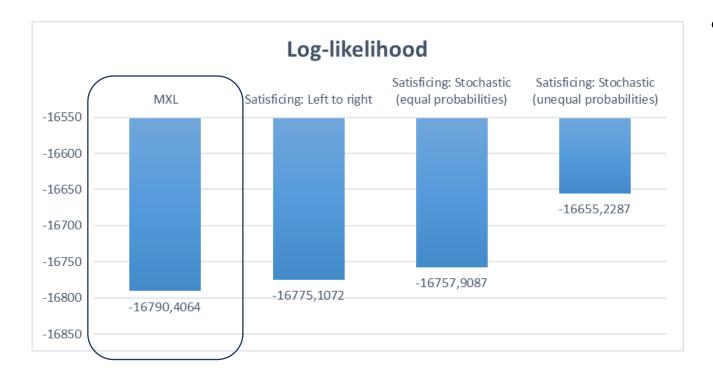
$$P(j | \boldsymbol{\beta}_{i}, ST_{i}) = \prod_{k=1}^{j-1} \exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right) \left(1 - \exp\left(-\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) + \prod_{k=1}^{K} \left(\exp\left(-\exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i} - ST_{i}\right)\right)\right) \left(\underbrace{\exp\left(\mathbf{X}_{ij}\boldsymbol{\beta}_{i}\right)}{\sum \exp\left(\mathbf{X}_{ik}\boldsymbol{\beta}_{i}\right)}\right)$$
Probability that alternative j
maximizes utility

- Preference heterogeneity can be easily incorporated
 - Similarly as in mixed logit
 - In current application we assume that all parameters are random and correlated (normally or log-normally distributed)
 - Satisficing threshold is also random and follows normal distribution
- Model is extended to incorporate stochastic satisficing
- If satisficing threshold is very large then model becomes a regular random utility model
 - Straightforward to test for satisficing behavior in the data
- Marginal rates of substitution can be easily calculated as ratio of parameters

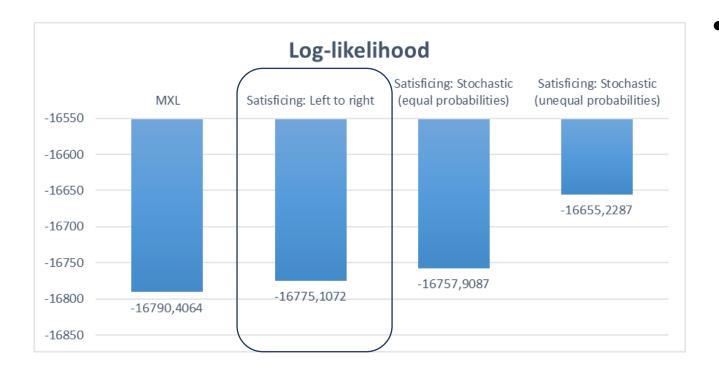
Data

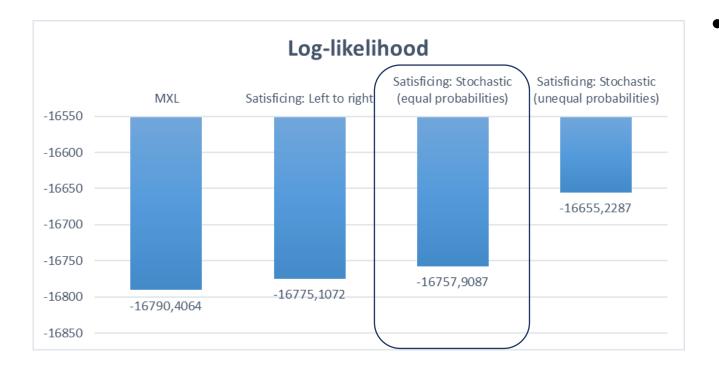

- Stated preferences are widely used to measure the value of non-market goods
 - In transportation, marketing, health, culture, environmental economics, ...
 - Based on surveys
- In recent years, Discrete Choice Experiments became a leading method in the field
 - Respondents are asked to choose between several alternatives of public policy described by various attributes (monetary and non-monetary)
- Many advantages:
 - Capture use and passive-use values
 - Go beyond the scope of the existing data
- But also important disadvantages:
 - Not based on market behavior
 - Hypothetical

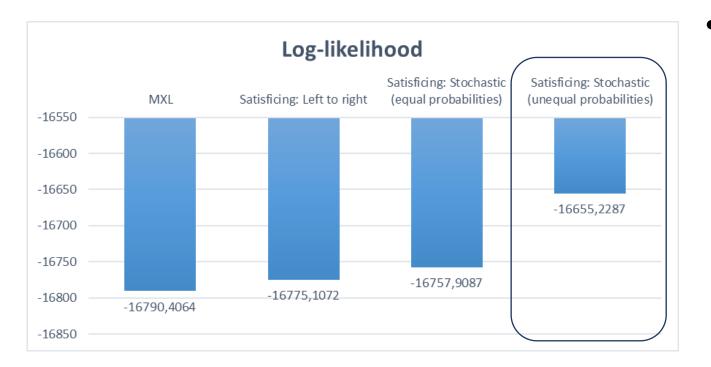
Data

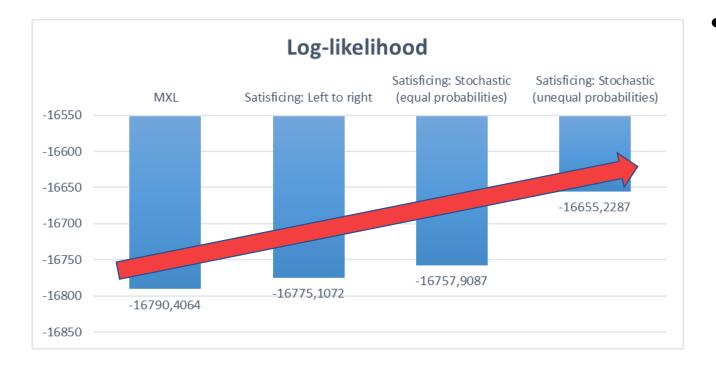

- Discrete Choice Experiment conducted on representative sample of 1001 Poles
- Objective of the study was to analyze preferences towards different programs of forest management in Poland
- 4 attributes
 - Passive protection of most ecologically valuable forests (Levels: 50% (SQ), 75%, 100%)
 - Amount of litter (Levels: No change, 50% reduction, 90% reduction)
 - Infrastructure for tourists (Levels: No change, Infrastructure in 50% additional forests, Infrastructure in 100% additional forests)
 - Cost (Levels: 0, 10, 25, 50, 100 PLN annually)
- 4 alternatives (including status quo), 26 choice tasks

Choice task example

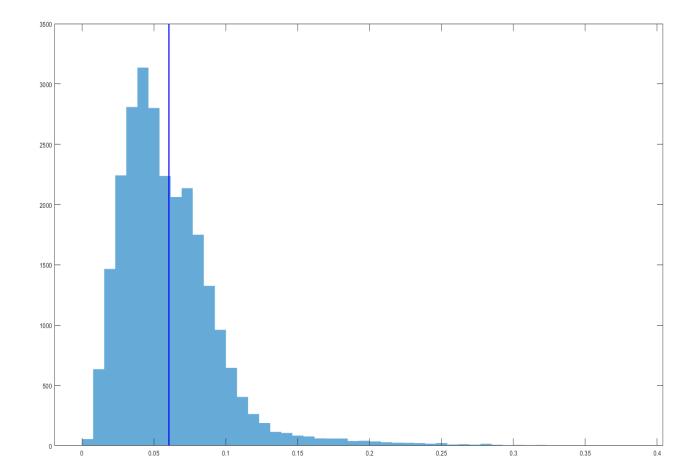

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Protection of ecologically valuable forests	Status quo Passive protection of 50% of the most ecologically valuable forests (1.5% of all forests)	Status quo Status quo Passive protection of 50% of the most ecologically valuable forests (1.5% of all forests)	Status quo Status quo Passive protection of 50% of the most ecologically valuable forests (1.5% of all forests)	Substantial improvement Passive protection of 100% of the most ecologically valuable forests (3% of all forests, 100% increase)
Litter in forests	Status quo No change in the amount of litter in the forests	Partial improvement Decrease the amount of litter in the forests by half (50% reduction)	Status quo No change in the amount of litter in the forests	Partial improvement Decrease the amount of litter in the forests by half (50% reduction)
Infrastructure	Status quo No change in tourist infrastructure	Status quo No change in tourist infrastructure	Appropriate tourist infrastructure in an additional 50% of the forests (50% increase)	Substantial improvement Appropriate tourist infrastructure available in twice as many forests (100% increase)
Cost	0 PLN	10 PLN	25 PLN	100 PLN


• We compare 4 models:


- We compare 4 models:
 - Basic Mixed Logit (MXL)
 - Random utility
 - No satisficing

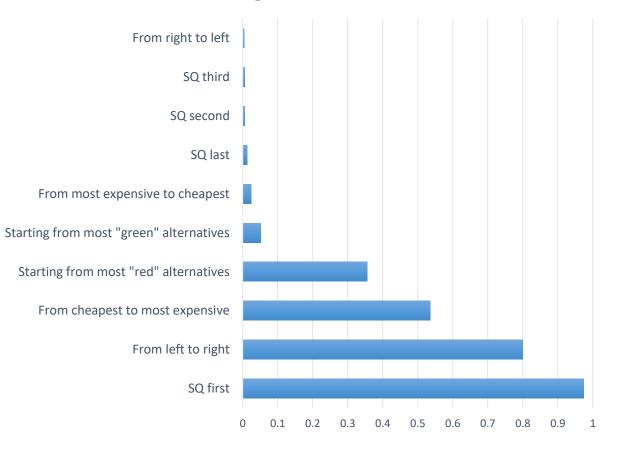

- We compare 4 models:
 - Satisficing Model
 - Order in which individuals evaluate alternatives is fixed
 - It is assumed that individuals go from left to right

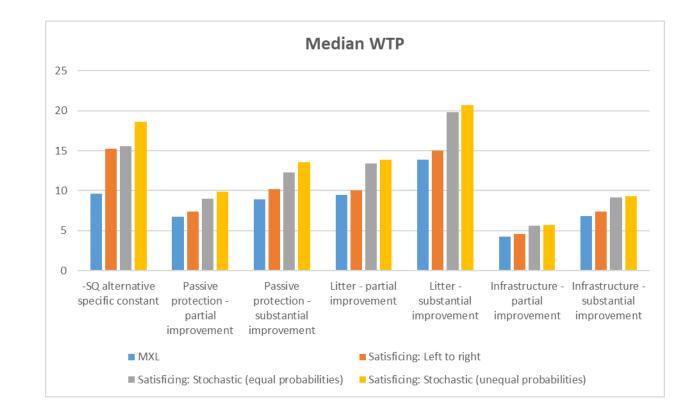
- We compare 4 models:
 - Stochastic Satisficing Model
 - Order in which individuals evaluate alternative is random
 - From the researcher perspective
 - Every order possible with the same probability



- We compare 4 models:
 - Stochastic Satisficing Model
 - Order in which individuals evaluate alternative is random
 - From the researcher perspective
 - Different orders can have different probabilities

- We compare 4 models:
 - Log-likelihood is increasing significantly
 - MXL is nested in all Satisficing Models
 - 4th model provides the best fit to the data
 - The same conclusion when using AIC or BIC for the comparison


- Share of the probability of choosing a given alternative that is explained by satisficing behavior
 - Ranges from 0% to 35%
 - On average 6%
 - Random utility model seems to explain bigger share of behavior than satisficing


Stochastic Satisficing model : Unequal probabilities

- There is a significant decision process heterogeneity with Stochastic Satisficing
 - Almost all individuals start with SQ
 - Around 80% go from left to right
 - Around 50% go from the cheapest to the most expensive

Average probability of evaluating alternatives with given order

- Obtaining Willigness To Pay values is usually the main objective of SP studies
- We find significant differences in median WTP estimates when using Stochastic Satisficing model
 - Model with deterministic order provides similar estimates to the regular MXL

Conclusions

- The proposed model leads to a significant improvement in a fit to the data
 - Nevertheless, satisficing seems to explain lower share of choice probabilities than a random utility model
- Satisficing behavior affects WTP estimates
 - Especially when Stochastic Satisficing is taken into account
 - Behavior that is not based on the random utility paradigm matters for stated prefence methods
- Future work
 - Analyzing more datasets (based also on the revealed preferences)
 - Using eye-tracking data

References

- Chorus, C., van Cranenburgh, S., & Dekker, T. (2014). Random regret minimization for consumer choice modeling: Assessment of empirical evidence. *Journal of Business Research*, 67(11), 2428-2436.
- De Palma, A., Ben-Akiva, M., Brownstone, D., Holt, C., Magnac, T., McFadden, D., ... & Walker, J. (2008). Risk, uncertainty and discrete choice models. *Marketing Letters*, 19(3-4), 269-285.
- González-Valdés, F., & de Dios Ortúzar, J. (2018). The Stochastic Satisficing model: A bounded rationality discrete choice model. *Journal of choice modelling*, 27, 74-87.
- Sandorf, E. D., & Campbell, D. (2018). Accommodating satisficing behaviour in stated choice experiments. *European Review of Agricultural Economics*, 46(1), 133-162.
- Scarpa, R., Zanoli, R., Bruschi, V., & Naspetti, S. (2012). Inferred and stated attribute nonattendance in food choice experiments. *American Journal of Agricultural Economics*, 95(1), 165-180.
- Stüttgen, P., Boatwright, P., & Monroe, R. T. (2012). A satisficing choice model. *Marketing Science*, 31(6), 878-899.