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Motivation

• Discrete choice models are frequently used to analyze individuals’ preferences
• They can identify various types of behavior from different data sources
• They are not limited to the lab setting

• Nevertheless, most models employ a random utility specification
• Assume that individuals are rational, evaluate all the alternatives and maximize their utility

• Not very realistic in light of behavioral research
• Allow for microeconomic inference

• For example, welfare analysis using marginal rates of substitution, or willingness to pay

• Recently there is a growing interest in more behavioral models
• Random regret minimization (Chorus et al., 2014)
• Attribute-non-attendance (Scarpa et al., 2012)
• Loss aversion (De Palma et al., 2008)

• Other heuristics are rarely investigated, as there is no modelling framework 
available



Satisficing

• Satisficing is a heuristics in which individual chooses alternative that is 
‘good enough’
• Individuals do not necessarily maximize utility

• They make decision based on some  aspiration level of the objective function

• Information about all alternatives is not readily available 
• Discovered sequentially through a search process

• Search can be costly (e.g. time/cognitive cost)

• It can still lead to an optimal choice



Satisficing

• In discrete choice modelling literature there were three applications 
of this heuristic to date
• Stüttgen, Boatwright and Monroe (2012)

• Sandorf and Campbell (2018)

• González-Valdés and de Dios Ortúzar (2018)

• Previous work employs attribute based inference
• Individual choose first alternative for which all attributes levels meet given 

criteria

• Or individuals may have criteria for only one attribute e.g. “Choose first 
alternative that is cheaper than X PLN”



Proposed model

• We propose a novel framework based on random utility model

• We assume that individual’s utility from choosing given alternative is 
additive and includes stochastic component

• We also assume that individuals have ‘satisficing threshold’,       ,
which describes their aspiration level for utility
• In the sense, we built upon previous work on choice set formation
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Proposed model

• Individual chooses first alternative for which utility exceeds satisficing 
threshold

Alternative 1 Alternative 2 Alternative 3

Attribute 1 1 0 1

Attribute 2 2 3 1

Attribute 3 0 0 2
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Proposed model

• Individual chooses first alternative for which utility exceeds satisficing 
threshold
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Proposed model

• If none of the utilities exceed satisficing threshold, we assume that 
individual chooses the one with the highest utility 

Alternative 1 Alternative 2 Alternative 3

Attribute 1 1 0 1

Attribute 2 2 3 1

Attribute 3 0 0 2

1i iU ST 2i iU ST 3i iU STChoice
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Proposed model

• The conditional likelihood for the choice of alternative j becomes then
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Proposed model

• The conditional likelihood for the choice of alternative j becomes then
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Proposed model

• Preference heterogeneity can be easily incorporated
• Similarly as in mixed logit

• In current application we assume that all parameters are random and correlated 
(normally or log-normally distributed)

• Satisficing threshold is also random and follows normal distribution

• Model is extended to incorporate stochastic satisficing

• If satisficing threshold is very large then model becomes a regular 
random utility model
• Straightforward to test for satisficing behavior in the data

• Marginal rates of substitution can be easily calculated as ratio of 
parameters



Data

• Stated preferences are widely used to measure the value of non-market goods
• In transportation, marketing, health, culture, environmental economics, …

• Based on surveys

• In recent years, Discrete Choice Experiments became a leading method in the 
field
• Respondents are asked to choose between several alternatives of public policy described by 

various attributes (monetary and non-monetary)

• Many advantages: 
• Capture use and passive-use values

• Go beyond the scope of the existing data

• But also important disadvantages:
• Not based on market behavior

• Hypothetical



Data

• Discrete Choice Experiment conducted on representative sample of 1001 
Poles

• Objective of the study was to analyze preferences towards different 
programs of forest management in Poland

• 4 attributes
• Passive protection of most ecologically valuable forests (Levels: 50% (SQ), 75%, 

100%)
• Amount of litter (Levels: No change, 50% reduction, 90% reduction)
• Infrastructure for tourists (Levels: No change, Infrastructure in 50% additional 

forests, Infrastructure in 100% additional forests)
• Cost (Levels: 0, 10, 25, 50, 100 PLN annually) 

• 4 alternatives (including status quo), 26 choice tasks



Choice task example



Results
• We compare 4 models:
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• We compare 4 models:

• Basic Mixed Logit (MXL)
• Random utility

• No satisficing



Results
• We compare 4 models:

• Satisficing Model
• Order in which individuals evaluate 

alternatives is fixed

• It is assumed that individuals go 
from left to right



Results
• We compare 4 models:

• Stochastic Satisficing Model
• Order in which individuals evaluate 

alternative is random
• From the researcher perspective

• Every order possible with the same 
probability
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• We compare 4 models:

• Stochastic Satisficing Model
• Order in which individuals evaluate 

alternative is random
• From the researcher perspective

• Different orders can have different 
probabilities



Results
• We compare 4 models:

• Log-likelihood is increasing 
significantly
• MXL is nested in all Satisficing

Models

• 4th model provides the best fit to 
the data

• The same conclusion when using 
AIC or BIC for the comparison



Results

• Share of the probability of 
choosing a given
alternative that is 
explained by satisficing 
behavior
• Ranges from 0% to 35%

• On average 6%

• Random utility model 
seems to explain bigger 
share of behavior than 
satisficing

Stochastic Satisficing model : 
Unequal probabilities



Results

• There is a significant decision 
process heterogeneity with 
Stochastic Satisficing
• Almost all individuals start 

with SQ

• Around 80% go from left to 
right

• Around 50% go from the 
cheapest to the most 
expensive
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Starting from most "green" alternatives
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SQ last

SQ second

SQ third

From right to left

Average probability of evaluating alternatives with 
given order



Results

• Obtaining Willigness To Pay 
values is usually the main 
objective of SP studies

• We find significant 
differences in median WTP 
estimates when using 
Stochastic Satisficing model
• Model with deterministic

order provides similar
estimates to the regular MXL



Conclusions

• The proposed model leads to a significant improvement in a fit to the 
data
• Nevertheless, satisficing seems to explain lower share of choice probabilities

than a random utility model

• Satisficing behavior affects WTP estimates
• Especially when Stochastic Satisficing is taken into account

• Behavior that is not based on the random utility paradigm matters for stated prefence
methods

• Future work
• Analyzing more datasets (based also on the revealed preferences)

• Using eye-tracking data
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