ENDOGENEITY OF INDICATOR VARIABLES IN HYBRID CHOICE MODELS: MONTE CARLO INVESTIGATION VS. STATED PREFERENCE STUDY

Wiktor Budziński, Mikołaj Czajkowski, Ewa Zawojska

University of Warsaw, Faculty of Economic Sciences

Outline

- Budzinski and Czajkowski (2020). Endogeneity and measurement bias of the indicator variables in hybrid choice models: A Monte Carlo investigation
 - Introduction to hybrid choice models
 - Endogeneity and hybrid choice models
 - Monte Carlo simulation setup
 - Monte Carlo simulation results
- Budzinski, Czajkowski and Zawojska (2020). *Endogeneity of self-reported consequentiality in stated preference studies*
 - Stated preferences and consequentiality
 - Data
 - Results

Hybrid choice models

- Initially proposed by Ben-Akiva et al. (1999) and Ben-Akiva et al. (2002)
- General framework for more complex choice models
 - Flexible disturbances
 - Explicit modelling of latent psychological factors
 - Latent segmentation for different decision protocols
- Integrated Choice and Latent Variables models focus mostly on the second point
 - Although currently the names are used interchangeably
- Useful when we are interested in the effect of `soft' (not objectively measureable) variables, such as perceptions and attitudes, on choices / preferences
 - More 'behavioral' approach for explaining preference heterogeneity

Hybrid choice models

 $\mathbf{LV}_{i} = \mathbf{\Psi'X}_{i}^{str} + \boldsymbol{\xi}_{i}$ $\mathbf{Latent variables}_{(structural equation)}$ Unobserved psychological factors

 $U_{ijt} = \mathbf{\beta}_i' \mathbf{X}_{ijt} + e_{ijt}$ $\mathbf{\beta}_i = \mathbf{\Lambda} \mathbf{L} \mathbf{V}_i + \mathbf{\Omega} \mathbf{S} \mathbf{D}_i + \mathbf{\beta}_i^*$

 $\mathbf{I}_i = \mathbf{\Gamma} \mathbf{L} \mathbf{V}_i + \mathbf{\Phi} \mathbf{X}_i^{Mea} + \mathbf{\eta}_i$

Measurement equations

Latent variables influence indicators (e.g. "To what extent do you agree with the statement that the results of the survey will influence future policy?" (from 1 – 'definitely disagree' to 5 – 'definitely agree')

Hybrid choice models

- Alternative approach is to directly include indicator variables into a choice model
 - Does not require a more complex choice model
- This approach is usually considered to be methodologically flawed
 - Indicators are not direct measures of latent constructs but rather their functions measurement bias
 - There may be unobserved effects that influence both a respondent's choice and their responses to indicator questions – <u>endogeneity bias</u>
- The use of HCMs is usually motivated by the claims that they solve those issues
- We investigate whether that is really the case with Monte Carlo simulations

Endogeneity and hybrid choice models

- Measurement error causes endogeneity in and by itself (Walker et al. 2010)
 - We treat it as a separate issue
- Chorus and Kroesen (2014) list possible reasons for endogeneity of latent variables:
 - Missing variables which influence both latent variable and choices of individuals
 - Learning effects
 - Individuals tend to align their attitudes with their actual choices in order to seem consistent
- Hybrid choice models have been used to solve endogeneity issue caused by some observed covariates
 - For example, effect of price when quality is unobserved
 - HCM can be used to impute missing variable
 - We do not study this. In our case indicators are the cause of endogeneity, rather than the solution for it

Endogeneity and hybrid choice models

- We consider two types of indicator variables' endogeneity:
 - LV-endogeneity
 - Latent variable is endogenous in itself
 - Correlated error terms in choice model and structural equations
 - M-endogeneity
 - Indicator variables are endogenous, but latent variable is not
 - Correlated error terms in choice model and measurement equations
- Simulation with 1'000 individuals, 6 choice tasks per person, 3 alternatives per choice task (including the Status Quo)
- 1000 repetitions

• DGP:

- Estimated models:
 - Base models allow us to check whether simulation works properly, and the extent of a measurement bias:

	Model type	Measurement error	Endogeneity	Description
Model 1	Hybrid MNL	No	No	No missing variables
Model 2	MNL	Yes	No	No missing variables, indicator variables entering directly

- Next we analyze the extent of error arising due to:
 - Endogeneity and measurement bias jointly
 - Endogeneity bias and ignoring the preference heterogeneity
 - Endogeneity bias

	Model type	Measurement error	Endogeneity	Description
Model 3	MXL	Yes	Yes	missing variable, random ASC indicator variables entering directly
Model 4	Hybrid MNL	Controlled	Yes	missing variable
Model 5	Hybrid MXL	Controlled	Yes	missing variable, random ASC

• These are models which are most likely to be used by researchers

- Lastly, we propose two different methods to mitigate endogeneity bias:
 Directly modeling the correlation between latent factor and random parameters
 - Incorporating additional latent variable to account for residual correlation between error terms

	Model type	Measurement error	Endogeneity	Description
Model 6	Hybrid MXL	Controlled	Controlled	missing variable, random ASC, additional correlation
Model 7	Hybrid MNL	Controlled	Controlled	missing variable, additional LV in model specification

• LV - endogeneity

• LV - endogeneity

Interaction of LV with ASC

• M - endogeneity

Interaction of LV with ASC

-3.5

• M - endogeneity

General conclusions are the same.

The main difference is that Model 6 leads to biased results. This solution does not work for M-endogeneity.

- M endogeneity seems to affect more coefficients than LV-endogeneity
 - Parameters in structural and measurement components are also biased
 - In LV-endogeneity case bias in structural component is also possible
- As expected in LV-endogeneity case Models 6 and 7 have similar log-likelihood value
 - In M-endogeneity case Model 7 has much better fit

Simulation results - summary

- Usually used specifications of HCMs do not account for the endogeneity of indicator variables
- Measurement bias can be substantial
 - Even with continuous indicator variables
- Possible solutions
 - Allowing for correlation between error terms in structural equations and choice model may help
 - Additional Latent Variables to capture residual correlation
 - Identification may be impossible, particularly with the two-step estimation procedure
 - The former does not work with M-endogeneity

ENDOGENEITY OF SELF-REPORTED CONSEQUENTIALITY IN STATED PREFERENCE STUDIES

Wiktor Budziński, Mikołaj Czajkowski, Ewa Zawojska

Stated preference methods

- Widely used to measure the value of non-market goods, especially public goods
- In transportation, marketing, health, culture, environmental economics, ...
- Based on surveys
- Many advantages:
 - Capture use and passive-use values
 - Go beyond the scope of the existing data
- But also important disadvantages:
 - Not based on market behavior
 - Might be viewed as not related to direct consequences
 - Incentive properties insufficiently understood

Conditions for truthful preference disclosure (Carson and Groves 2007; Carson et al. 2014; Vossler et al. 2012)

One of the conditions requires the survey consequentiality

A necessary condition for truthful preference disclosure: Consequentiality

- "a survey's results are seen by the agent as <u>potentially influencing</u> an agency's actions and the agent cares about the outcomes of those actions" (Carson and Groves 2007)
- "an individual faces or perceives a nonzero probability that their responses will <u>influence decisions</u> related to the outcome in question and they will be <u>required to pay</u> for that outcome"

(Contemporary Guidance for Stated Rreference Studies, Johnston et al. 2017)

policy consequentiality

payment consequentiality

Other dimensions of consequentiality? E.g., pivotality?

Challenges with consequentiality

- **Consequentiality communicated** via survey scripts does not necessarily affect consequentiality perceptions (Czajkowski et al. 2017; Lloyd-Smith et al. 2019)
- How to elicit consequentiality perceptions?
 - A single general question: To what extent do you believe that the survey outcome will affect the decision of public authorities?
 - Questions differentiating between policy and payment consequentiality
 - More indicator (measurement) questions
- How to include data on consequentiality perceptions in preference modelling?
 Endogeneity concerns: Self-reports on perceived consequentiality are likely driven by similar (unobservable) factors as stated preferences

Our study addresses these questions

Endogeneity of consequentiality perceptions explored in previous studies

- Herriges et al. (2010) an exogenous information treatment and a Bayesian treatment-effect model; <u>importance of controlling for endogeneity</u>
- <u>No significant problem of endogeneity</u> especially in studies using sociodemographics as instruments:
 - Vossler et al. (2012) a generalized method of moments over-identification test
 - Interis and Petrolia (2014) a two-step instrumental variable probit model
- Groothuis et al. (2017) a bivariate probit approach; perceived consequentiality found to be endogenous; unobserved factors strengthen the consequentiality and decrease the likelihood of voting for the program
- Lloyd-Smith et al. (2019) a special multi-step estimator for a scaled probit model; <u>importance of controlling for endogeneity</u>; with no endogeneity control, perceived consequentiality affects voting behavior, but the effect disappears with the special regressor

Endogeneity of consequentiality perceptions explored in previous studies

- Herriges et al. (2010) an exogenous information treatment and a Bayesian treatment-effect model; <u>importance of controlling for endogeneity</u>
- <u>No significant problem of endogene</u> Limitations: demographics as instruments:
 Little evide
 - Vossler et al. (2012) a generalized m
 - Interis and Petrolia (2014) a two-ster
- Mixed evidence Step-wise procedures

Little evidence – very few studies

- Groothuis et al. (2017) a bivariate p found to be endogenous; unobserve decrease the likelihood of voting for the program
 Single indicator (measurement) questions for consequentiality
- Lloyd-Smith et al. (2019) a special multi-step estimator for a scaled probit model; <u>importance of controlling for endogeneity</u>; with no endogeneity control, perceived consequentiality affects voting behavior, but the effect disappears with the special regressor

Endogeneity control in hybrid choice models

Budziński and Czajkowski (2020)

- Standard hybrid choice models do not resolve endogeneity
- Two types of endogeneity:
 - 1) Latent variables are endogenous
 - 2) Indicator variables are endogenous, but latent variables are not
- Solutions:
 - Directly modeling the correlation between latent variables and random parameters help (1)
 - Adding a latent variable to capture the correlation caused by missing covariates – help (1) and (2) Model 3

Model 1

Model 2

Measurement equations (ordered probit)

Latent variables influence self-reports about beliefs in survey consequentiality

Latent variables

Unobserved beliefs about survey consequentiality

Discrete choice model

(interactions in the mixed logit model)

Latent variables influence stated preferences

Discrete choice experiment

- Public-good scenario: Extension of public theater offer in Poland (a number of shows)
- 4 choice tasks per person; CAWI; a representative sample of 2,863 residents of Poland

		Variant A	Variant B No changes	Attribute levels
	Entertainment theaters	+ 25%	no change	
	Drama theaters	+ 50%	no change	+ 25%, + 50%,
	Children's theaters	no change	no change	no change
	Experimental theaters	+ 50%	no change	
	Annual cost for you (tax)	50 PLN	o PLN	5, 10, 20, 50 PLN
	Your choice			

Consequentiality elicitation

- Randomized statements assessed on a Likert scale with seven levels: from 'definitely disagree' to 'definitely agree' + don't know
- Used in the measurement → 9 ordered probit models as measurement equations
 I think that ...
- [1] ... by participating in this survey, I will have influence on the future theater offer.
- [2] ... the results of this survey will determine if to change the theater offer.
- [3] ... the results of this survey will be used to decide if to change the theater offer.
- [4] ... if the theater offer is decided to be changed, the results of this survey will be used to decide which type of shows will be played more and less.
- [5] ... the increase of the theater offer as described in this survey is possible to be implemented.
- [6] ... a decision to expand the theater offer will indeed result in more shows and premiers, as described in this survey.
- [7] ... a decision to expand the theater offer will indeed result in higher (tax) fees, which will increase my household expenditures, as described in this survey.
- [8] ... I am one of many people participating in this survey, so my responses do not have a chance to affect the survey final results.
- [9] ... a decision whether to change the theater offer will be taken independently of the survey results.

Results

Measurement equations (ordered probit)

Latent variables influence self-reports about beliefs in survey consequentiality

Latent variables

Unobserved beliefs about survey consequentiality

Discrete choice model

(interactions in the mixed logit model)

Latent variables influence stated preferences

Model 1	Model 2	Model 3
Standard	Corr. LVs and	
Stanuaru	random parameters	Ŧ⊥LV

How many latent variables to include?

How many dimensions of consequentiality do we have?

Results: Measurement equations

Ordered probits

Coefficients on how LV1 explains each statement

Many participants - negligible role Offer extension means higher taxes Offer extension means more shows Offer change is possible Survey influences shows Survey will be used to decide Survey determines the theater offer I influence the theater offer

Results: Measurement equations

-0.4

Ordered probits

Coefficients on how LV2 explains each statement

Decision independent of the survey Many participants - negligible role Offer extension means higher taxes Offer extension means more shows Offer change is possible Survey influences shows Survey will be used to decide Survey determines the theater offer

Results: Measurement equations

Ordered probits

Additional latent variable in Model 3 (+ 1 LV) to control endogeneity

Coefficients on how LV3 explains each statement

Results

Measurement equations (ordered probit)

Latent variables influence self-reports about beliefs in survey consequentiality

Latent variables

Unobserved beliefs about survey consequentiality

Discrete choice model

(interactions in the mixed logit model)

Latent variables influence stated preferences

- Two latent variables (LVs) expressing perceived consequentiality:
 - General belief in consequentiality
 - Lack of belief in pivotality

Mixed logits with means interacted with LVs

Mean coefficient estimates

	Model 1	Model 2	Model 3
	Standard	Corr. LVs and random parameters	+ 1 LV
Status quo	0.4719***	0.4459***	0.4711***
Entertainment	0.8926***	0.999***	0.9151***
Drama	0.5769**	0.464*	0.4259
Children's	0.1364	0.1099	0.0443
Experimental	-0.4336	-0.502*	-0.409
– Cost (10 EUR)	3.7752***	3.8161***	3.6282***

- Preference parameters are random
- For all, standard deviations are (highly) significant
- Mean coefficient estimates are similar across models

Mixed logits with means interacted with LVs

Coefficients of interactions of means with LV1 (general consequentiality)

- Model 2 (Corr) accounts for one endogeneity type: endogeneity of the latent variable
- Endogeneity control matters largely for cost
- And so it changes willingness-topay values
- In Model 3 (+1 LV), maybe another consequentiality dimension? Does not fully account for residual correlation

Mixed logits with means interacted with LVs

Coefficients of interactions of means with LV₂ (pivotality)

- Similar findings
- Endogeneity control in Model 2 matters for many attributes
- In Model 3, maybe another latent factor is needed?

Mixed logits with means interacted with LVs

Coefficients of interactions of means with LV3

Closing thoughts

- Accounting for endogeneity matters
- The proposed solutions works well when we have well defined latent constructs
- No theory regarding dimensions of consequentiality (or other attitudes captured)
 - This could guide designing indicator questions to elicit respondents' perceptions
 - No construct validity
 - Theory does not predict what effect on preferences we should expect
- Maybe use some algorithm to find proper specification, similar to:
 - Paz, Alexander, Cristian Arteaga, and Carlos Cobos. "*Specification of mixed logit models assisted by an optimization framework.*" Journal of choice modelling 30 (2019): 50-60.
- Some problems with the interpretation of additional LVs
- Design an experiment to make causal inferences?

THANKYOU!

Wiktor Budziński, Mikołaj Czajkowski, Ewa Zawojska

