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Simulation error

—Mixed (random parameters) logit models estimated using the
simulated maximum likelihood method
— Necessarily associated with simulation error

— A different set of draws = somewhat different estimation results

—What type of draws performs best?
—How many draws are ,,enough”?



Mixed logit model

e Utility function with preference heterogeneity

Uijt = XijuBi + &t
* Conditional probability of the choice given by the logit formula:
(y,ﬁ | ) exp( utIB)
ZeXp .|t;8

* Unconditional probability given by the integral:
v)=[TI(P(vu 1 B)" )f (A12)d5

* Which can be approximated by



Simulation error vs. the number of draws
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Quasi Monte Carlo methods

—Quasi Monte Carlo methods reduce simulation-driven variation
— Halton sequence (Train 2000, Bhat 2001),
— Sobol sequence (Garrido 2003)
— Randomized (t,m,s)-nets (Sandor and Train 2004)
— Modified Latin Hypercube (Hess, Train and Polak 2006)
— Lattice rules (Munger et al. 2012)

— Generalized antithetic draws with double base shuffling (Sidharthan and
Srinivasan 2010)

— Shuffling, scrambling sequences (Bhat 2003, Hess, Polak and Daly 2003, Hess
and Polak 2003, Wang and Kockelman 2008)




Pseudo-random vs. Halton sequence

Scatter plot of 1000

draws for 2 pseudo-random sequences

Scatter plot of 1000 draws for 2 Halton sequences
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Halton vs. scrambled Halton sequence

ter plot matrix of 100 draws for 8 Halton sequences Scatter plot matrix of 100 draws for 8 scrambled Halton sequences

Scat




Gaps in existing evidence

—What is the extent of the simulation bias resulting from using different
numbers of different types of draws in various conditions (datasets)?

— Shortcoming of the existing studies:
— Low numbers of QMC draws (< 200)
— Low number of repetitions for each type and number of draws (< 10)
— Results likely to depend on the number of observations (individuals, choice tasks per
individual)
— Examples of 100 Halton draws leading to smaller bias than 1,000 pseudo-
random draws (e.g., Bhat, 2001) have led some to actually use very few draws
for simulations

—Qur study aims at filling these gaps



Design of our simulation study —
Choice task setting and explanatory variables

. Assumed Possible values of the explanatory variables

Explanatory variables :

) : parameter Alternative 1 : oA
(choice attributes) . Alternative 2 Alternative 3

distribution (status quo / opt-out)

X, (alternative specific constant) N (*1.0,0.5) X, =1 X, =0 X, =0
X, (dummy) N(1.0,0.5) X, =0 X, {0,1} X, 40,1}
X, (dummy) N(I.0,0.S) X, =0 X, E{O,l} X, E{O,l}
X, (dummy) N(1.0,0.5) X, =0 X, €{0,1} X, {01}
X (discrete) N(—I.0,0.S) X, =0 X, E{_L2,3,4} X e {1,2,3,4}




Design of our simulation study —
Choice task setting and explanatory variables

Draws Datasets

Number of
choice tasks per
individual

Repetitions Number of

Number ot Experimental
draws

individuals designs

Types of draws

100

200

500
1,000

2,000
P“‘?’{?L"gg o 5,000 4 400 OOD-design
o 10,000 8 800 MNL-design

ool 20,000%* 12 1,200 MXT -design
2000 50,000

100,000%
200,000%
500,000%

1,000,000%

1,000

*Selected settings only.



Methodology of comparisons

- We need a measure that takes expected values into account but also

penalizes variance
— For typical equality tests — the larger the variance, the more difficult to reject
the equality hypothesis

— Testing equivalence instead of equality
- Reverse the null and the alternative hypotheses
— Test if the absolute difference is higher than a priori defined ‘acceptable’ level

- Minimum Tolerance Level (MTL)

- What is the minimum ‘acceptable’ difference that allows to conclude that two
distributions are equivalent at the required significance level

- How many draws of type A are required, so that with 95% probability the
difference in LL / estimates / s.e. / z-stats is not going to be statistically
different than:

— The critical value of the LR-test
- If the model was estimated using n draws of type B



Example — using MTL for the values of the LL function

— Re-estimating the model using a different set of draws is likely to
result in a somewhat different value of the LL function

—If LL is used for inference (e.g., LR-test), it is possible to conclude that
one specification is superior to another only because one was more
lucky” with the draws

- By using the MTL approach we are able to evaluate the probability of
such an outcome
— Assume « = 0.05, the interpretation of MTL, 4 is that with 95% probability

using a different set of draws would not cause the difference in LL values to be
higher than MTL, o

— We can provide recommendations for the minimum number of draws that
would result in MTL, o5 lower than the specified level



Results — relative performance of types of draws

— Example: MTL, ;s of LL for MXL-design, 400 x 4:

- Pseudo-random
——MLHS
Halton
& —| ——Sobol
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Percentage of times each type of draws resulted in the lowest
simulation error (MTL, o) for the log-likelihood function value

10,000

0.00%

0.00%

0.00%

Number of draws used  Pseudo-random MLHS Halton Sobol
100 0.00% 0.00% 18.52% 81.48%
200 0.00% 0.00% 29.63% 70.37%
500 0.00% 0.00% 22.22% 77.78%
1,000 0.00% 0.00% 25.93% 74.07%
2,000 0.00% 0.00% 0.00% 100.00%
5,000 0.00% 0.00% 14.81% 85.19%

100.00%



Percentage of times each type of draws resulted in the lowest
simulation error (MTL, 45) for parameter estimates

10,000

0.00%

0.00%

9.26%

Number of draws used  Pseudo-random MLHS Halton Sobol
100 0.00% 0.37% 42.96% 56.67%
200 0.00% 0.00% 33.33% 606.67%
500 0.00% 0.00% 31.11% 68.89%
1,000 0.00% 0.00% 31.48% 68.52%
2,000 0.00% 0.00% 15.93% 84.07%
5,000 0.00% 0.00% 20.74% 79.26%

90.74%



Results — regression results
Dependent variable: log(MTL)

Log-likelihood Par.a meter z-statistics
estimates
Constant 2.8382%* -0.9566%** 0.7334%+%
(0.0817) (0.0425) (0.0362)
log(number of draws) -0.6338*+* -0.5786%** -0.5638***
(0.0075) (0.0038) (0.0032)
Psendo-random draws 1.4568%*** 0.8770#4* 0.8360%**
(Sobol used as a reference) (0.0365) (0.01806) (0.0158)
MIHS draws 0.9021#** 0.6495%+* 0.6144%+*
(Sobol used as a reference) (0.0382) (0.0194) (0.0166)
Halton draws 0.3216%** 0.2173%** 0.2209%**
(Sobol used as a reference) (0.0382) (0.0194) (0.01606)
. 0.1153%** -0.0450%%* 0.0230%**
Number of choice tasks (0.0041) 0.0021) 0.0018)
Number of individuals 0.8695%** -0.6377*+* 0.2956%**
(in thousands) (0.0409) (0.0208) (0.0177)
OOD-design -0.1267%+* 0.3125%** 0.2449***
(MXIL-design used as a reference) (0.0329) (0.0168) (0.0143)
MNL-design -0.1495%+* 0.3224** 0.3558%**
(MXL-design used as a reference) (0.0329) (0.0168) (0.0143)
Standard deviations 1.4735%* 1.4228**
(Means used as a reference) (0.01306) (0.01106)
X, (alternative specific constant) 0.3610% 01193+
! (0.0170) (0.0150)
sokok ok
X (discrete variable) (2073?5 6 ?Oogzg 0)
R? 0.9299 0.8465 0.869
n (observations) 816 8160 8160




Results — Sobol draws consistently perform best

— Percent of additional draws needed to achieve the same simulation

error as Sobol draws:

Pseudo-random

. 889%
[776% - 1,020%)
. 361%
Parameter estimates [331% - 392%]
z-stats %3
321% - 375%]

MLHS Halton
305% 66%
[258% - 360%] [47% - 87%]
209% 48%
[189% - 232%] [38% - 58%]
200% 51%
[182% - 219%] [42% - 60%]

* Based on regression analysis



Simulation error —
Results: how many draws are ‘enough'?

—-Using more draws is always better to using fewer draws
—-How many are 'enough' depends on the desired precision level
- Log-likelihood:

- Imagine you are comparing 2 specifications using LR-test (d.f. = 1)

— Simulation error low enough to have 95/99% probability of not erroneously
concluding that one model is better than the other

- In other words, 95/99% of the times the (simulation driven) difference in LL must be
lower than 1.9207

400x4 800x4 1'220X 400 x 8 800x8 1,200x8 400x12 800x12 1,200x 12
@=005 173 277 444 375 602 965 814 1,306 2,095

a=0.01 238 384 617 517 3831 1,337 1,119 1,800 2896



Simulation error —
Results: how many draws are ‘enough’?

— Parameter estimates:
— No absolute difference level

— The numbers of draws required for 95% probability that the difference
between parameter estimates :

400x4 800x4 1,200x4 400x8 800x8 1,200x8 400x12 800x12 1,200x12

< 5%
(a=0.85) 1,230 895 652 1,155 840 612 1,085 790 575
<5%
(a=0.01) 1,802 1,312 956 1,686 1,228 894 1,578 1,149 837
<1%
(a=0.05) 11,321 8,241 5,999 10,637 7,743 5,637 9,994 7,275 5,296
<1%
(a=0.01) 16,569 12,066 8,787 15,506 11,292 8,224 14,511 10,568 7,696

- More draws required for standard deviations, ASC, dummies, fewer required
for means, cost

— Similar results for comparisons with models estimated using 1,000,000 draws



Using too few draws and identification problems —
percentage of times z-statistics exceeded 1.96

Panel A (MNL, NCT = 4, NP = 1200)

Panel B (MXL, NCT = 4, NP = 1200)

nnnnnn




“It must take ages to estimate models
with so many draws!”

— Estimation time (1 iteration = LL function evaluation + gradient)

— Data set: 400 respondents x 4 choice tasks
— Intel E5-2687W @ 3.00 GHz (12-core) CPU (no GPU used!)
— Efficient code implementation (Matlab, https://github.com/czaj/dce)

Number of draws 1,000 10,000 100,000 1,000,000

lteration time 0.25s 1ls 10 s 100 s


https://github.com/czaj/dce

Summary and conclusions

—We investigate the performance of the 4 most commonly used types
of draws for simulating log-likelihood in the mixed logit model setting

—We find Sobol draws consistently result in the lowest simulation error
Sobol draws recommended

— Conditional on our simulation setting, we find one needs more draws
than typically used for ‘reliable’ estimation results

At least 1,000 draws (at 5%)

- mean of the minimums; samples with fewer observations require fewer draws
for precise LL and more draws for precise betas, and vice versa

—Evidence of erroneous inference on significance (both ways), if too
few draws are used



