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Simulation error

‒ Mixed (random parameters) logit models estimated using the 
simulated maximum likelihood method

‒ Necessarily associated with simulation error

‒ A different set of draws = somewhat different estimation results

‒What type of draws performs best?

‒How many draws are „enough”? 



Mixed logit model

• Utility function with preference heterogeneity

• Conditional probability of the choice given by the logit formula:

• Unconditional probability given by the integral:

• Which can be approximated by
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Simulation error vs. the number of draws



Quasi Monte Carlo methods

‒ Quasi Monte Carlo methods reduce simulation-driven variation
‒ Halton sequence (Train 2000, Bhat 2001), 

‒ Sobol sequence (Garrido 2003)

‒ Randomized (t,m,s)-nets (Sándor and Train 2004)

‒ Modified Latin Hypercube (Hess, Train and Polak 2006)

‒ Lattice rules (Munger et al. 2012)

‒ Generalized antithetic draws with double base shuffling (Sidharthan and 
Srinivasan 2010)

‒ Shuffling, scrambling sequences (Bhat 2003, Hess, Polak and Daly 2003, Hess 
and Polak 2003, Wang and Kockelman 2008)



Pseudo-random vs. Halton sequence



Halton vs. scrambled Halton sequence



Gaps in existing evidence

‒ What is the extent of the simulation bias resulting from using different 
numbers of different types of draws in various conditions (datasets)?

‒ Shortcoming of the existing studies:
‒ Low numbers of QMC draws (≤ 200)

‒ Low number of repetitions for each type and number of draws (≤ 10)

‒ Results likely to depend on the number of observations (individuals, choice tasks per 
individual)

‒ Examples of 100 Halton draws leading to smaller bias than 1,000 pseudo-
random draws (e.g., Bhat, 2001) have led some to actually use very few draws 
for simulations

‒ Our study aims at filling these gaps



Design of our simulation study –
Choice task setting and explanatory variables



Design of our simulation study –
Choice task setting and explanatory variables



Methodology of comparisons

− We need a measure that takes expected values into account but also 
penalizes variance

− For typical equality tests – the larger the variance, the more difficult to reject 
the equality hypothesis

− Testing equivalence instead of equality
− Reverse the null and the alternative hypotheses

− Test if the absolute difference is higher than a priori defined ‘acceptable’ level

− Minimum Tolerance Level (MTL)
− What is the minimum ‘acceptable’ difference that allows to conclude that two 

distributions are equivalent at the required significance level

− How many draws of type A are required, so that with 95% probability the 
difference in LL / estimates / s.e. / z-stats is not going to be statistically 
different than:

− The critical value of the LR-test

− If the model was estimated using n draws of type B



Example – using MTL for the values of the LL function

− Re-estimating the model using a different set of draws is likely to 
result in a somewhat different value of the LL function

− If LL is used for inference (e.g., LR-test), it is possible to conclude that 
one specification is superior to another only because one was more 
‘lucky’ with the draws

− By using the MTL approach we are able to evaluate the probability of 
such an outcome

− Assume α = 0.05, the interpretation of MTL0.05 is that with 95% probability 
using a different set of draws would not cause the difference in LL values to be 
higher than MTL0.05

− We can provide recommendations for the minimum number of draws that 
would result in MTL0.05 lower than the specified level



Results – relative performance of types of draws

− Example: MTL0.05 of LL for MXL-design, 400 x 4:



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for the log-likelihood function value

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.00% 0.00% 18.52% 81.48%

200 0.00% 0.00% 29.63% 70.37%

500 0.00% 0.00% 22.22% 77.78%

1,000 0.00% 0.00% 25.93% 74.07%

2,000 0.00% 0.00% 0.00% 100.00%

5,000 0.00% 0.00% 14.81% 85.19%

10,000 0.00% 0.00% 0.00% 100.00%



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for parameter estimates

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.00% 0.37% 42.96% 56.67%

200 0.00% 0.00% 33.33% 66.67%

500 0.00% 0.00% 31.11% 68.89%

1,000 0.00% 0.00% 31.48% 68.52%

2,000 0.00% 0.00% 15.93% 84.07%

5,000 0.00% 0.00% 20.74% 79.26%

10,000 0.00% 0.00% 9.26% 90.74%



Results – regression results
Dependent variable: log(MTL)

 
Log-likelihood 

Parameter 
estimates 

z-statistics 

Constant 
2.8382***     
(0.0817) 

-0.9566***     
(0.0425) 

0.7334***     
(0.0362) 

log(number of draws) 
-0.6338***     
(0.0075) 

-0.5786***     
(0.0038) 

-0.5638***     
(0.0032) 

Pseudo-random draws 
(Sobol used as a reference) 

1.4568***     
(0.0365) 

0.8770***     
(0.0186) 

0.8360***     
(0.0158) 

MLHS draws 
(Sobol used as a reference) 

0.9021***     
(0.0382) 

0.6495***     
(0.0194) 

0.6144***     
(0.0166) 

Halton draws 
(Sobol used as a reference) 

0.3216***     
(0.0382) 

0.2173***     
(0.0194) 

0.2209***     
(0.0166) 

Number of choice tasks 
0.1153***     
(0.0041) 

-0.0450***     
(0.0021) 

0.0230***     
(0.0018) 

Number of individuals 
(in thousands) 

0.8695***     
(0.0409) 

-0.6377***     
(0.0208) 

0.2956***     
(0.0177) 

OOD-design  
(MXL-design used as a reference) 

-0.1267***     
(0.0329) 

0.3125***     
(0.0168) 

0.2449***     
(0.0143) 

MNL-design  
(MXL-design used as a reference) 

-0.1495***     
(0.0329) 

0.3224***     
(0.0168) 

0.3558***     
(0.0143) 

Standard deviations  
(Means used as a reference) 

 
1.4735***     
(0.0136) 

1.4228***     
(0.0116) 

1X  (alternative specific constant)  
0.3610***     
(0.0176) 

0.1193***     
(0.0150) 

5X  (discrete variable)  
-0.7795***     

(0.0176) 
0.0373**      
(0.0150) 

R2 0.9299 0.8465 0.869 

n (observations) 816 8160 8160 

 1 



Results – Sobol draws consistently perform best

− Percent of additional draws needed to achieve the same simulation 
error as Sobol draws:

* Based on regression analysis

Pseudo-random MLHS Halton

LL
889%

[776% - 1,020%]
305%

[258% - 360%]
66%

[47% - 87%]

Parameter estimates
361%

[331% - 392%]
209%

[189% - 232%]
48%

[38% - 58%]

z-stats
347%

[321% - 375%]
200%

[182% - 219%]
51%

[42% - 60%]



Simulation error –
Results: how many draws are 'enough'?

−Using more draws is always better to using fewer draws

−How many are 'enough' depends on the desired precision level

−Log-likelihood:
− Imagine you are comparing 2 specifications using LR-test (d.f. = 1)

− Simulation error low enough to have 95/99% probability of not erroneously 
concluding that one model is better than the other

− In other words, 95/99% of the times the (simulation driven) difference in LL must be 
lower than 1.9207

400 x 4 800 x 4
1,200 x

4
400 x 8 800 x 8 1,200 x 8 400 x 12 800 x 12 1,200 x 12

α = 0.05 173 277 444 375             602              965             814               1,306              2,095               

α = 0.01 238 384 617 517              831 1,337 1,119 1,800               2896



Simulation error –
Results: how many draws are ‘enough’?

− Parameter estimates:
− No absolute difference level

− The numbers of draws required for 95% probability that the difference 
between parameter estimates :

− More draws required for standard deviations, ASC, dummies, fewer required 
for means, cost

− Similar results for comparisons with models estimated using 1,000,000 draws

400 x 4 800 x 4 1,200 x 4 400 x 8 800 x 8 1,200 x 8 400 x 12 800 x 12 1,200 x 12

< 5%
(α = 0.05) 1,230 895                           652                           1,155 840 612 1,085                           790 575

< 5%
(α = 0.01) 1,802                           1,312                           956                           1,686                           1,228                           894 1,578                           1,149                           837                           

< 1%
(α = 0.05) 11,321                           8,241 5,999                           10,637 7,743 5,637 9,994                           7,275 5,296

< 1%
(α = 0.01) 16,569 12,066                           8,787 15,506                           11,292 8,224 14,511 10,568 7,696



Using too few draws and identification problems –
percentage of times z-statistics exceeded 1.96



“It must take ages to estimate models 
with so many draws!”

− Estimation time (1 iteration = LL function evaluation + gradient)
− Data set: 400 respondents x 4 choice tasks

− Intel E5-2687W @ 3.00 GHz (12-core) CPU (no GPU used!)

− Efficient code implementation (Matlab, https://github.com/czaj/dce)

Number of draws 1,000 10,000 100,000 1,000,000

Iteration time 0.2 s 1 s 10 s 100 s

https://github.com/czaj/dce


Summary and conclusions

‒ We investigate the performance of the 4 most commonly used types 
of draws for simulating log-likelihood in the mixed logit model setting

‒ We find Sobol draws consistently result in the lowest simulation error

Sobol draws recommended 

− Conditional on our simulation setting, we find one needs more draws 
than typically used for ‘reliable’ estimation results

At least 1,000 draws (at 5%)

− mean of the minimums; samples with fewer observations require fewer draws 
for precise LL and more draws for precise betas, and vice versa

‒ Evidence of erroneous inference on significance (both ways), if too 
few draws are used


